Panel Discusses Promise and Challenges of Both Additive and Hybrid Machines
Manufacturers ranging from orbital to underground shared their thoughts on additive manufacturing at the recent Innovation Days event.
Share
Read Next
The machine coming soon integrates additive manufacturing into a turning and milling machine accommodating parts ranging to 26 inches diameter.
At DMG MORI’s recent “Innovation Days” event in Hoffman Estates, Illinois, one of the more than 30 machine tools the company featured was a prototype of the new Lasertec 4300 3D additive manufacturing machine to be released later this year. This hybrid machine—the second hybrid from the company—integrates additive manufacturing capability into a machine capable of turning and milling parts ranging to 26 inches in diameter and 59.1 inches long.
The event also included a panel discussion with representatives of companies using or exploring additive manufacturing. On the panel were representatives of NASA and Virgin Galactic, as well P Tooling and Global Innovations, both of which are involved in mining or oil and gas drilling.
P Tooling is a machining business based in Amherstburg, Ontario, serving the oil industry. Company president Marv Fieberg described the various benefits he expects to realize from additive manufacturing. They include:
- Flanges. To produce a part with a flange, the shop’s approach today is to begin with a workpiece much larger than the finished part and machine it down so that the flange is revealed. With so much metal reduced to chips, it can sometimes seem to him as though “only the steel supplier makes money,” he says. Adding the flange (as opposed to machining away everything that’s not a flange) will provide a more efficient approach.
- Complexity. Parts holding instrumentation for directional drilling can be intricate, he says. Additive manufacturing will provide a simple way to make these complex forms.
- Inconel. With additive manufacturing, the expensive alloy can be applied sparingly, he says. For example, Inconel can be used to clad or build just the critical features of a part that is otherwise made from a much less costly metal.
- Diversification. It is a given among oilfield manufacturers that the oilfield industry is not always a lucrative sector to serve. By acquiring expertise at additive manufacturing, Mr. Fieberg hopes his shop can become a supplier to the aerospace sector as well.
Speaking from that sector, Virgin Galactic combustion devices manager Mauritz deRidder and propulsion production engineer Kevin Zagorski described the value their company sees in additive. Part of that value is in consolidating assemblies, they say—saving effort and saving weight by redesigning subassemblies into complex single pieces that can be additively grown. However, “there is no single killer app,” Mr. Zagorski says. Rather, there are so many potential applications for additive that the company “can’t afford to not pay attention to it.”
But Mr. deRidder points out the challenges. There are several. For example, additive manufacturing can grow complex internal features, but how do manufacturers then inspect those features? How can the geometry and finish of features deep inside of a part be validated? The answer to that question will somehow have to be found, he says, before additive parts with critical internal geometry can enter production.
Certain other challenges are being addressed. Established metal additive manufacturing machines are relatively slow and capable of making only small parts, he notes, but the hybrid machine concept—metalcutting machine tools with additive capability, such as those from DMG MORI—addresses both of these problems. On a CNC machine tool, both the speed and the size of additive manufacturing can more practically be scaled up.
Yet he points out that hybrid machines do introduce a challenge relative to the established additive manufacturing systems. On a system such as a powder bed machine, it is an easy matter to grow test coupons along with the part to validate the material properties. But on a hybrid machine tool laying down material using an additive head, producing test coupons would require additional machine motion and cycle time. Finding the most efficient way to validate material is another detail he says Virgin Galatic, and other companies aiming to make end-use parts additively, will have to work out if they adopt a hybrid approach.
The new machine will apply additive manufacturing using a metal deposition system like that of the company’s Lasertec 65 3D hybrid machining center, seen here.
Related Content
Velo3D Founder on the 3 Biggest Challenges of 3D Printing Metal Parts
Velo3D CEO and founder Benny Buller offers this perspective on cost, qualification and ease of development as they apply to the progress of AM adoption in the future.
Read MoreImplicit Modeling for Additive Manufacturing
Some software tools now use this modeling strategy as opposed to explicit methods of representing geometry. Here’s how it works, and why it matters for additive manufacturing.
Read More3D Printed Lattices Replace Foam for Customized Helmet Padding: The Cool Parts Show #62
“Digital materials” resulting from engineered flexible polymer structures made through additive manufacturing are tunable to the application and can be tailored to the head of the wearer.
Read More3D Printed Lattice for Mars Sample Return Crash Landing: The Cool Parts Show Bonus
NASA Jet Propulsion Laboratory employs laser powder bed fusion additive manufacturing plus chemical etching to create strong, lightweight lattice structures optimized to protect rock samples from Mars during their violent arrival on earth.
Read MoreRead Next
Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read MoreNew Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreHow Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read More