Aitrtech
Published

Dyndrite SMART Script Automates Generation of 3D Layouts That Adhere to ASTM/ISO Standards

Developers say that automating this process enables manufacturers to achieve approximately 99% labor savings, eliminating human error and accelerating workflows across multiple machines and materials.

Share

Dyndriteā€™s SMART script automatically generates build layouts in accordance with ASTM/ISO standards. Source: Dyndrite

Dyndrite’s SMART script automatically generates build layouts in accordance with ASTM/ISO standards. Source: Dyndrite

Dyndrite worked with the ASTM Consortium to develop the Specimen Management via Automated Resource-efficient Techniques (SMART) script which automates how manufacturers create build layouts for characterization and qualification in additive manufacturing (AM).

It is a Python script developed as part of the ASTM’s Consortium for Materials Data and Standardization (CMDS) initiative. Operating through Dyndrite’s programmable laser powder bed fusion (LPBF) Pro software, the SMART script automates the generation of layouts that adhere to ASTM/ISO standards, thereby streamlining an otherwise labor-intensive process. 

The SMART script is designed to deliver a comprehensive solution that automatically generates build layouts in accordance with ASTM/ISO standards, including standardized testing coupons, labeling schemas, machine configurations and data management protocols. The company says collective tasks that once took over a week and a half to complete manually using legacy build preparation software can now be accomplished in minutes. Automating these tasks can enable manufacturers to achieve approximately 99% labor savings, eliminate human error and accelerate workflows across multiple machines and materials.

“The ability to automatically drive 3D print build automation that adheres to ASTM/ISO Standards and CMDS best practices marks a major milestone in additive manufacturing,” says Steve Walton, head of product at Dyndrite. “With the SMART script, we’re enabling manufacturers to easily  and consistently adhere to layout standards preventing re-derivation of industry rules and objectives, reducing costs to the community and improving confidence in public consortium products — this is how we grow the adoption of additive manufacturing.”

Initially targeting midsized single-laser laser powder bed fusion (LPBF) systems, this script can optimize build layouts codifying part placement rules developed by CMDS. Subsequent iterations of the SMART script will broaden machine selection to include large-format, multilaser machines, as well as other powder bed AM processes such as binder jetting. The script implements the ASTM labeling schema to ensure all specimens are labeled appropriately and generates standardized reports, which drives efficiency in documenting key attributes to ensure high-pedigree data capture across builds.

The benefits of this innovation are said to extend far beyond workflow efficiency. By accelerating the characterization and qualification process, the SMART script can open the door to economically viable production in rigorously regulated industries, such as aerospace, medical and defense. 

Dyndrite LPBF Pro is a software solution designed to optimize AM processes with automation and control. Specifically built for LPBF, it enables engineers and materials scientists in highly regulated industries to create scriptable CAD-to-Print automations; conduct complex materials and process development studies; streamline qualification and calibration workflows; and smoothly transition from development to full-scale production. With Dyndrite’s toolpath control, users can print challenging parts — such as thin walls, cantilevers and domes — while codifying knowledge, ensuring repeatable quality and minimizing human error.

“Standards are the backbone of any emerging industry, and in additive manufacturing, they are critical for ensuring quality, safety and consistency across every step of the process,” says Richard Huff, director, Industry Consortium and Partnerships, Global Advanced Manufacturing Division at ASTM International. “By establishing clear guidelines for generating and managing high-pedigree material datasets, CMDS aims to establish the foundations for manufacturers to innovate faster and create a pathway for industries — especially those that are heavily regulated like aerospace and medical — to adopt new technologies with confidence in a faster and less costly manner.”

As automation shapes the future of additive manufacturing, the company says that tools like this can transform how companies innovate and operate by accelerating qualification processes and reducing labor costs.

Airtech
UPM Additive Solutions
The World According To
Acquire
AM Radio
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event

Related Content

Production

How Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing

Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services. 

Read More
Tooling

Chuck Jaws Achieve 77% Weight Reduction Through 3D Printing

Alpha Precision Group (APG) has developed an innovative workholding design for faster spindle speeds through sinter-based additive manufacturing.

Read More
Materials

Video: Construction 3D Printing with Robotics, Geopolymer

Alquist 3D is aiming to revolutionize construction and infrastructure with large-format robotic 3D printing using a carbon-neutral material.

Read More
Polymer

Large-Format “Cold” 3D Printing With Polypropylene and Polyethylene

Israeli startup Largix has developed a production solution that can 3D print PP and PE without melting them. Its first test? Custom tanks for chemical storage.

Read More

Read Next

Design

3MF File Format for Additive Manufacturing: More Than Geometry

The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.

Read More
Metal

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
Basics

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
Airtech International Inc.