Aitrtech
Published

Incus Successfully Tests Lithography-Based Metal Manufacturing for Lunar Environment

The project aim was to develop a sustainable process that uses lunar resources and recycled scrap metals (eventually contaminated by lunar dust) to produce spare parts on-site which could help and enhance human settlement on the moon.

Share

Demonstration parts scaled for the project. Photo Credit: Incus

Demonstration parts scaled for the project. Photo Credit: Incus

Incus, a provider of lithography-based solutions for additive manufacturing (AM), has successfully completed its joint 18-month project with the European Space Agency (ESA), OHB System AG and Lithoz GmbH to test the potential of 3D printing and zero-waste workflow for the lunar environment. The ESA-sponsored project, developed by Incus and Lithoz GmbH under the coordination of OHB System AG as prime contractor, aimed to research the feasibility of processing lunar scrap metals (which might be recovered from debris from old missions or old satellites) to produce high-quality printed parts using AM, specifically lithography-based metal manufacturing, also taking into consideration potential in situ contamination by using lunar regolith simulant.

The project’s goal was to develop a sustainable process that uses lunar resources and recycled scrap metals, eventually contaminated by lunar dust, to produce spare parts on-site which could help and enhance human settlement on the Moon. The successful use of lunar resources and recycling of scrap metals is vital to the creation of a sustainable Moon base. Lithography-based metal manufacturing (LMM) was selected for its ability to print from recycled metal waste and its ease and safety during printing and postprocessing.

The biggest challenge for lunar AM is the harsh lunar environment, including the atmosphere, gravity, temperature, radiation and the potential contamination of moon dust. However, the Hammer Lab35 Incus 3D printing solution was able to print recycled titanium powder while maintaining proper part quality. The produced parts demonstrated a high level of strength, comparable to Metal Injection Molded Titanium parts standards (1,000-1,050 MPa).

The LMM technology used in the project can print from scrap metals using premixed feedstock, without free and loose powder and the need for any support structures, offering a sustainable zero-waste workflow. The project also included the development of a green binder and the optimization of preprocessing and postprocessing steps to print and test different demonstrators for future lunar applications.

The project's results have important implications for the future of space exploration and the development of sustainable Moon bases. “This project has proven that LMM technology is able to use recycled powder for the feedstock material and provide sustainable zero-waste workflow,” says Dr. Gerald Mitteramskogler, Incus CEO. “We expect that further developments in metal recycling technologies will open the way to metal materials with more settled sintering processes for the lunar environment.”

The project’s optimal scenario for the 3D printing habitat on the Moon base is comparable to that on Earth, with reduced gravity and human-graded radiation shielding, ensuring that no major modifications or redesigns are required aside from the size, mass and volume reduction of the 3D printer. “Considering the challenge of bringing humans back to the Moon and building a base, the topic of in-situ resource utilization (ISRU) is gaining significant momentum. Projects like this, recently completed by Incus and project partners, demonstrate that manufacturing methods like LMM are very good candidates to support such an endeavour,” says Dr. Martina Meisnar, materials and processes engineer at ESA.

According to Dr. Martin Schwentenwein, head of material development at Lithoz, this successful collaboration showed that lithography-based AM techniques are among the most promising candidates to let 3D printing in space become a reality in the future.

The use of local lunar resources, as well as the recycling of old spacecraft, are essential for a sustainable and Earth-independent Moon base. “Through this project, it was proven that the LMM technology is able to use recycled powder sources as feedstock material. Furthermore, it was demonstrated that contaminations for the powder sources by using lunar regolith simulant are manageable, especially from the perspective of the printing process,” says Francesco Caltavituro, OHB system engineer for the project. “With those aspects in mind, as well as the future challenges already foreseen and anticipated, upcoming research and development will be able to continue and open up further the way toward a sustainable Moon settlement finally released from Earth dependency.”


UPM Additive Solutions
The World According To
Airtech
Acquire
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event
AM Radio

Related Content

Polymer

Evaluating the Printability and Mechanical Properties of LFAM Regrind

A study conducted by SABIC and Local Motors identified potential for the reuse of scrap reinforced polymer from large-format additive manufacturing. As this method increases in popularity, sustainable practices for recycling excess materials is a burgeoning concern.

Read More
Aerospace

MolyWorks Streamlines Production With 3D Systems’ Direct Metal Printing Solution

MolyWorks, a California-based developer of a circular economy for metal, has integrated 3D Systems’ DMP Flex 350 into its manufacturing workflow, enabling it to be more agile and efficient, and expand its customer base.

Read More
Polymer

OnAdditive Offers Aftermarket Upgrade for 3ntr A2, A4 3D Printers

The enhanced capabilities include a new control system that gives the printers increased printing speeds, improved quality, automatic bed leveling and various other user-centric improvements.

Read More

Sustainable Furniture Company Model No. Maintains Product Focus with Switch from DIY to Industrial 3D Printers

The startup founded in 2018 has matured in its product offerings as well as its manufacturing equipment, moving from homegrown 3D printers to industrial large-format machines.

Read More

Read Next

Hybrid manufacturing

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Software

3MF File Format for Additive Manufacturing: More Than Geometry

The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.

Read More
Artificial Intelligence

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
Airtech International Inc.