Are You a 3D Printing Beginner

Share

At a recent reveal event in the company’s home city of Mesa, Arizona, large-format metal additive manufacturing startup Rosotics debuted its new “Mantis” system for 3D printing large pressurized vessel parts such as spacecraft tank, rocket stage and fuselage sections. Two innovations distinguish the company’s machine, both of which are evident in the photo below.

Mantis additive manufacturing system from Rosotics

The Mantis system from Rosotics. Metal 3D printing with wire is performed using induction to melt the material. Large-diameter sections are printed onto rotary work surfaces like those seen at the floor of this photo. The machine configuration seen here is about 25 feet tall. Photo: Rosotics.

One innovation is the method of melting the material. Rosotics’ directed energy deposition system is wire-fed, but rather than a laser, it uses what the company terms “Rapid Induction Printing” to deposit material. The wire is fed through an electromagnetic coil generating heat in the metal via eddy currents.

This leads to several benefits, says co-founder and CEO Christian LaRosa. Two metal AM safety hazards, metal powder and lasers, are both avoided. Meanwhile, power consumption is less, to the extent that the machine can be run off a standard industrial electrical connection. “We are able to do this from a simple 240-volt outlet,” he says.

The other innovation is in the machine design. The Mantis system prints building-size metal structures, but it does not require a frame or gantry as large as these parts. The travel of the robot-like deposition arm is coordinated with a rotary work surface on which the cylindrical part grows.

Rosotic CEO with Mantis machine

There is “an entire assembly stage we can now eliminate” in the production of large spacecraft sections, says CEO Christian LaRosa. Photo: Rosotics.

This rotary work surface is a modular component, changed out according to the size of the part being built, and today might accommodate parts up to 9 meters (30 feet) in diameter. Providing for rotary feed in this way leaves the motion of the print arm itself entirely free for controlling the metal deposition angle as the part turns, including printing unsupported overhangs.

LaRosa says, “If you can get those degrees of freedom from the system, you can begin to combine multiple components together, [such as] a tank section with an integrated dome taper at the top.” These are otherwise separate pieces. “Figuring out how to bring the large pieces together and get a friction stir weld between them — that is an entire assembly stage we can now eliminate by changing the process.”

Importantly, the reliance on eddy currents does not preclude non-conductive metals, he says. Aluminum is an important metal for the applications the company targets. In the case of this metal, rather than heating the feedstock directly, the induction can be used to heat an inner sleeve that in turn heats the metal. The Mantis has thus proven effective for printing with both steel and aluminum at a controlled deposition rate of 15 kg per hour. The modular system can also be configured to let up to three heads print the same part simultaneously, for a controlled rate of 50 kg per hour.

Production will begin on the first commercial Mantis systems later this year. To ensure affordability and allow Rosotics access for upgrading machines in the field, the company is not selling the system outright, but instead marketing it through a hardware-as-a-service model involving an entry fee and a recurring subscription price.

Are You a 3D
Colibrium Additive
Accelerating
Convey metal powders with PowTReX from Volkmann
IMTS2024
Formnext Chicago
AM Radio
Additive Manufacturing Conference
The Cool Parts Show

Related Content

Space

8 Transformations 3D Printing Is Making Possible

Additive manufacturing changes every space it touches; progress can be tracked by looking for moments of transformation. Here are 8 places where 3D printing is enabling transformative change.

Read More
Aerospace

3D Printed NASA Thrust Chamber Assembly Combines Two Metal Processes: The Cool Parts Show #71

Laser powder bed fusion and directed energy deposition combine for an integrated multi-metal rocket propulsion system that will save cost and time for NASA. The Cool Parts Show visits NASA’s Marshall Space Flight Center.

Read More
Sustainability

Reusable LOX/Kerosene Engine Completes First Successful Full-System Test Flight

Galactic Energy Space Technology announced the first successful full-system test flight of its Welkin 50-ton reusable LOX/kerosene engine. To date, this is the highest thrust LOX/kerosene engine in the Chinese commercial aerospace playing field which has officially entered the engineering and manufacturing phase.

Read More
Metal

3D Printed Lattice for Mars Sample Return Crash Landing: The Cool Parts Show Bonus

NASA Jet Propulsion Laboratory employs laser powder bed fusion additive manufacturing plus chemical etching to create strong, lightweight lattice structures optimized to protect rock samples from Mars during their violent arrival on earth.

Read More

Read Next

Materials

The Way Ahead for Wire Arc Additive Manufacturing

Tooling today, production tomorrow. The capability will advance as value is increasingly seen in lead time savings and design opportunities. Parts that today are cast offer a particularly promising application for a process that is “welding, except not.”

Read More
Production

Space Launch System Accumulator is a Giant Leap for 3D Printing

A collaboration between Aerojet Rocketdyne and NASA is resulting in critical parts being 3D printed for new versions of the workhorse RS-25 engine. 

Read More
Aerospace

Artemis I Has Launched: 3D Printing Applications for This Space Mission and Beyond: AM Radio #25B

On this episode of AM Radio, we discuss how additive manufacturing is enabling a new era of space exploration.

Read More
Are You a 3D