3D Printing Machine Training
Published

Researchers Lay Groundwork for 3D Printing Electrical Machines

For more than a year, three partners have been focused on a research project that lays the groundwork for next-level electrical machines as they work to gain an in-depth understanding of the involved materials and technologies.

Share

The research team says the design of crucial motor parts has a thorough impact on how the electrical currents interact with the magnetic field to create torque. Photo Credit: Ghent University

The research team says the design of crucial motor parts has a thorough impact on how the electrical currents interact with the magnetic field to create torque. Photo Credit: Ghent University

Additive Manufacturing for Electrical Machines (AM4EM) is a research project by Ghent University, KU Leuven and VITO for the application of 3D printing or additive manufacturing (AM) to improve the performance of electrical machines. The aim is to achieve more energy-efficient electrical motors such as stator or rotor cores.

Their focus is to imagine the perfect motor combining the best insulating and conductive materials in the best possible design — where the impact of the current is optimally converted into actual movement. The main challenge is to combine these conductive and insulating materials into complex multimaterial geometries. Researchers say this is a challenge because multimaterial 3D printing is basically still in its infancy. Hence, all materials, printing technologies and designs have to be thoroughly evaluated.

VITO is an independent research organization in the area of clean technology and sustainable development. More specifically, it has been researching 3D printing viscous powder-loaded pastes, which it says is an underexposed segment in AM. This paste printing with ceramics and metals is one of the technologies used in the project. The team says some important steps have already been realized. Micro-extrusion 3D printing of copper paste has led to printed parts without printing defects, a relative density of 95-99% and an electrical conductivity of 90-102% IACS. Researchers say this means it is possible to print pure copper with the properties needed for the applications at hand.

Positive results have also been achieved with the 3D printing of Fe-Si steel, which is needed for the motor core. The next step is to print multimaterial combinations for the magnetic core stacks, whereby a layer of ceramic insulator alternates with Fe-Si steel layers. Although initial results look positive, there are still related challenges such as uniform shrinkage of the material and warping of the layers.

KU Leuven is known in AM as the cradle of Materialise and Layerwise (now 3D Systems). In this project, it is focusing on fused filament fabrication (FFF) of metals and ceramics. Or rather it prints polymer filaments with a high content of metal or ceramic powder. The polymer in the filament is only needed to make the material printable and is removed after printing. Here, the challenge is only partially related to the 3D printing itself — debinding and sintering require careful analysis as well to determine the optimal parameters such as temperatures, solvents, extrusion width or speeds and more. KU Leuven’s efforts have resulted in relative density results above 95% for copper and 97.3% for ceramic, and even for combinations of both materials in one print.

Ghent University has expertise in multiphysics models for electrical machines and is focused on the complexity of how currents actually flow through conducting materials, which requires in-depth simulation expertise. This is because the design of crucial motor parts has a thorough impact on how the electrical currents interact with the magnetic field to create torque. By consequence, the design details strongly determine how efficient the machine will ultimately be. Researchers says these smart designs can make quite a difference when it comes to the efficiency of the resulting magnetic flux.

These combined efforts on different printing techniques, design and material improvements may deliver innovative MM-AM processes that can be applied for sensors, radars, actuators, electrical machines and more. Ultimately, the AM4EM project targets an increase in energy efficiency by 5% (compared to small induction machines) and an increase in power density by 40%. The team says the fundamental research and development steps taken in the AM4EM project are essential in order to decrease the energy consumption of our society as a whole.

Airtech
The World According To
UPM Additive Solutions
Acquire
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event
AM Radio

Related Content

Production

How 3D Printing Aids Sustainability for Semiconductor Equipment: The Cool Parts Show Bonus

Hittech worked with its customer to replace fully machined semiconductor trays with trays made via DED by Norsk Titanium. The result is dramatic savings in tool consumption and material waste.

Read More
Sustainability

GE Additive Helps Build Large Metal 3D Printed Aerospace Part

The research is part of an initiative to develop more fuel-efficient air transport technologies as well as a strong, globally competitive aeronautical industry supply chain in Europe.

Read More
Robots

BMW Expands Use of Additive Manufacturing to Foster Production Innovations

The BMW Group is manufacturing many work aids and tools for its own production system using various 3D printing processes, with items such as tailor-made orthoses for employees, teaching and production aids, and large, weight-optimized robot grippers, which are used for such things as carbon fiber-reinforced polymer roofs and entire floor assemblies.

Read More

Machine Tool Drawbar Made With Additive Manufacturing Saves DMG MORI 90% Lead Time and 67% CO2 Emission

A new production process for the multimetal drawbar replaces an outsourced plating step with directed energy deposition, performing this DED along with roughing, finishing and grinding on a single machine.

Read More

Read Next

Casting

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Product Development

How Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing

Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services. 

Read More
Education & Training

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
3D printing machine trainings