3D Printing Machine Training
Published

From Functional Parts to Lots of Functional Parts, AM Is Advancing into Production Scale

The assumption that additive is only for low-volume manufacturing is about to give way. Read these stories of companies getting ready for additive production at larger scales.

Share

Additive manufacturing at production scale is coming.

What scale, specifically? We will see. But the belief that AM is for production of only low-quantity runs seems as though it might be the latest assumption about additive that will need to give way. Technologies for fast and repeatable 3D printing appropriate to volume production have appeared and are now finding their places, and we cover various examples in recent posts.

Assumptions giving way have marked the story of 3D printing so far. First, there was the assumption that 3D printing is only for prototyping and can’t be trusted for functional components. The term “additive manufacturing” had yet to be coined. Then there was the assumption that additive technologies can indeed make functional tooling such as molds, but offers a poor choice for end-use parts.

Now, an assumption still current says that additive manufacturing can make end-use parts after all, but is appropriate for end-use parts only at low quantities. At anything like production scale, some conventional process has to take over. This will be the next assumption to fall. Companies we’ve met with recently already see as much.

The Technology House, for example, has tracked the entire arc of these assumptions. Founded to provide prototypes via 3D printing, the company advanced from there into manufacturing, but not additive manufacturing. It advanced into manufacturing initially by buying a machine shop. But now, with the adoption of Carbon’s CLIP technology, the company’s plans to advance the machine shop are vying with its pursuit of production AM.

By contrast, 3DEO jumped onto that arc far along the curve. This company has been focused on production from the beginning. Making production-scale parts additively proved so promising, this company believed its best way forward was to keep its special 3D printing platform in-house and provide part-making services as this platform’s sole user.

roller finger follower made via additive manufacturing on HP metal 3D printer

Producing a part such as this roller finger follower today would require tooling such as a mold or, if machined from solid, would require an elaborate machining cycle. 3D printing offers a simpler process.

Then there is HP. The stainless steel part above was made on HP’s new Metal Jet 3D printer, which the company debuted at the Additive Manufacturing Conference at the International Manufacturing Technology Show (IMTS). We got a preview ahead of the launch; here is our report. Additive manufacturing—and AM specifically for production—is “the biggest long-term bet HP is making,” says company 3D Printing President Stephen Nigro.

What other assumptions about additive are being harbored still? One might be that the part ought to be ready for finishing or assembly as soon as it comes out of the printer. In the case of each of the production AM technologies covered in this issue, the next stop after 3D printing is an oven or furnace for curing or sintering the part. Stephanie Hendrixson and I wrote these articles, and neither of us aimed for an “oven” theme, but that is the way the issue came together. That commonality among these stories is perhaps a meaningful clue. One of the ways to try to realize an additive process that is both productive and cost-effective is to let the forming of the part and the curing of the material occur in two separate steps within two separate stations. Not every AM process being applied to production makes this separation, but it might be that the presence of ovens and the development of oven technology will prove more and more instrumental to AM.

Noticing clues like this—that is where AM has us right now. That’s what we need to keep doing. AM is so new, and we are still so young in our understanding of it, that we don’t yet know where it will lead. And AM as a potential means of volume production is so new that that possibility is barely here. At this point, we are still prone to fail in our imagining. There is ever the danger of assuming too soon that we have AM technology all figured out, that we have seen additive settle into its role, that the bounds of its progress are in sight.

All we can do is watch, taking care to be wary of the hype, of course, but also taking care not to trust too fully in the certainty of our current assumptions.

Stick with us and let’s keep on watching. Let’s keep on questioning our assumptions together.
World According To
Acquire
Airtech
SolidCAM Additive - Upgrade Your Manufacturing
AM Radio
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event

Related Content

Beehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing

Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.

Read More
Cool Parts

This Drone Bird with 3D Printed Parts Mimics a Peregrine Falcon: The Cool Parts Show #66

The Drone Bird Company has developed aircraft that mimic birds of prey to scare off problem birds. The drones feature 3D printed fuselages made by Parts on Demand from ALM materials. 

Read More
Defense

At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?

The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.

Read More
LFAM

How Norsk Titanium Is Scaling Up AM Production — and Employment — in New York State

New opportunities for part production via the company’s forging-like additive process are coming from the aerospace industry as well as a different sector, the semiconductor industry.

Read More

Read Next

Automation

3D Printed Polymer EOAT Increases Safety of Cobots

Contract manufacturer Anubis 3D applies polymer 3D printing processes to manufacture cobot tooling that is lightweight, smooth and safer for human interaction.

Read More

Crushable Lattices: The Lightweight Structures That Will Protect an Interplanetary Payload

NASA uses laser powder bed fusion plus chemical etching to create the lattice forms engineered to keep Mars rocks safe during a crash landing on Earth.

Read More
Postprocessing

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
3D printing machine trainings