Where 3D Printing Makes Sense for Micro Medical Devices
A contract manufacturer uses stereolithography to produce high-quality medical devices on a micro-scale for prototyping and end use.
Share
Read Next
Potomac Photonics, a contract manufacturer located in Baltimore, Maryland, is familiar with the common challenges of 3D printing, like build orientation, resolution and surface finish. But in Potomac’s case, these challenges are magnified—literally. The company is known for its microfabrication work, and has the ability to machine, laser cut and 3D print parts on a very small scale. Micromachining expertise combined with a dual-material SLA 3D printer enables the company to create a number of medical devices and device components, both in prototype and for end use.
Founded in 1982, Potomac Photonics is located at “Bwtech@UMBC” Research and Technology Park, the university research park for the University of Maryland, Baltimore County. The company has conducted collaborative projects with commercial and government agencies in medical device manufacturing, biotech and electronics fabrication. Using technologies ranging from laser micromachining to hot embossing, the company can micromachine materials including polymers, metals, ceramics and glass. The parts the company produces frequently demand features down to 1 micron, and in some cases even smaller, says Mike Adelstein, president and CEO.
For its additive manufacturing work, Potomac relies on a 3D Systems Projet 3500 3D printer capable of layer thickness down to 16 microns (smaller features are achieved by micromachining printed parts. The SLA printer uses a two-material process that can print wax supports and voids alongside the polymer for the part. Once the build is complete, support removal is fast and easy. The wax is melted away in an oven, leaving behind a surface finish that is good enough for functional prototyping and even some end-use applications. Two example applications for the medical industry are pictured in the slideshow above.
The first photo (Figure 1) shows a pair of components developed with Memorial Sloan Kettering Cancer Center that compose a microfluidic mold. The mold in turn is used to make a polydimethylsiloxane (PDMS) microchamber for growing cancer cells in a controlled environment. These microchambers are commonly used in biology and biomedical applications, but developing and producing them using traditional moldmaking can create a costly bottleneck. By 3D printing these acrylic prototypes, Potomac was able to save cost and reduce lead time for the cancer center.
Figure 2 shows a set of components for an ear implant used to treat otosclerosis disease. Otosclerosis is an abnormal hardening of the stapes bone inside the middle ear. Commonly called the stirrup bone, the stapes is responsible for moving the inner ear fluids to enable the sensory process of hearing. If the bone becomes fixed, its ability to generate these vibrations is limited, resulting in hearing loss.
The parts pictured were created for a stapes prosthesis developed by the Institute of Micromechanics and Photonics at Warsaw Technical University in Poland. Though these are prototypes, they were used to verify that the device geometry would allow it to be implanted into a temporal bone. Prior to turning to Potomac, the institute had tried another 3D printing process that did not achieve the small, precise geometries and tight tolerance necessary for this verification. Given the quality that Potomac has been able to achieve in these small prototypes, it may be economically viable to 3D print short production runs of this prosthetic.
In both cases, the parts are shown following the removal of the wax, but without any additional postprocessing. Achieving these results is part equipment, part trial and error, and part know-how. The resolution of the printer contributes, but factors such as laser power and orientation also play a role. The shop has learned through experience what the best orientation for a given part is likely to be, but also performs testing when needed. The Projet's 11.75 × 7.3-inch (298 × 185-mm) build platform enables Potomac to print the same component in multiple orientations in a single build, so as to quickly determine the optimal orientation.
Even with past experience and up-front work, though, “Sometimes we reach the limits of what 3D printing can do,” says Adelstein. In these cases, the shop turns to a combination of its micromachining technologies. It might 3D print the part as near-net-shape as possible, then use the laser to machine the smallest features, for example. Or the company might switch from 3D printing small batches of a part to machining or molding it if production takes off. “It could be good for one stage of the project, but it’s not always good for the whole project,” he says.
In all cases, Potomac seeks to choose the technology that will best serve the needs of its customers. The 3D printer is used where it can save time and cost while meeting required tolerances. As the technology develops and new materials are introduced, Adelstein sees its usage for production growing.
Related Content
Intrepid Automation: How Investment Casting Benefits From High Speed DLP
Vat polymerization 3D printing for investment casting patterns offers a way to deliver design freedom at production speed.
Read MoreAltana Launches 10 Resin-Based Cubic Ink Materials for 3D printing
The new resins in the Cubic Ink family of 3D printing materials are focused on system-open and industry-applicable additive manufacturing across DLP, LCD and SLA technologies.
Read MoreCranial Implant 3D Printed From Hydroxyapatite Ceramic: The Cool Parts Show #76
Cranial implants are typically made from titanium or PEEK; in this episode of The Cool Parts Show, we look at how implants made from a bioceramic can improve osseointegration and healing.
Read MoreStudents Use Micro Metal 3D Printing for ISS Microgravity Experiment
Qualified3D printed lattice parts for the students using microstereolithography (micro SLA), which seemed to be the only process able to produce the parts with sufficient accuracy.
Read MoreRead Next
3MF File Format for Additive Manufacturing: More Than Geometry
The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.
Read MoreNew Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreCarnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read More