One Week to Take Additive Manufacturing Further
A 5-day advanced course at the new Additive Manufacturing Competency Center is aimed at quickly advancing the knowledge and effectiveness of current AM users.
The UL AMCC will include various companies’ additive manufacturing machines, as suggested by the row of machines in this rendering.
The new Additive Manufacturing Competency Center created by UL (Underwriters Laboratories) has announced that registration is now open for its initial, hands-on course, Advanced Training on Metal Part Production, September 14-18. The UL AMCC says this course is the first of what will be a comprehensive technical and business curriculum on additive manufacturing.
Located in Louisville, Kentucky, adjacent to and in partnership with the University of Louisville, the UL AMCC was founded this year. It aims to be a hub for advancing process knowledge and workforce expertise in additive manufacturing. Future advanced courses will focus on materials as well as specific industry applications of AM such as medical, aerospace, automotive and consumer products. Class sizes will be limited to enhance student interaction and overall experience, UL says.
The first course, Advanced Training for Metal Part Production is for quickly advancing the knowledge and effectiveness of current AM users. The course follows this outline:
- Day 1: Introduction to selective laser melting
- Day 2: Design, process planning and set up
- Day 3: Process parameters and post-process heat treatments
- Day 4: Finishing and evaluation
- Day 5: Implementation
Further, students will design and manufacture parts in this course as part of project teams.
Next year, when more UL AMCC courses are available, students will be able to meet the prerequisites for this advanced course through earlier courses at the center. For now, the prerequisites include experience with both additive and traditional manufacturing, including design and quality experience. Learn more here.
Related Content
-
VulcanForms Is Forging a New Model for Large-Scale Production (and It's More Than 3D Printing)
The MIT spinout leverages proprietary high-power laser powder bed fusion alongside machining in the context of digitized, cost-effective and “maniacally focused” production.
-
3D Printed Titanium Replaces Aluminum for Unmanned Aircraft Wing Splice: The Cool Parts Show #72
Rapid Plasma Deposition produces the near-net-shape preform for a newly designed wing splice for remotely piloted aircraft from General Atomics. The Cool Parts Show visits Norsk Titanium, where this part is made.
-
3D Printed Cutting Tool for Large Transmission Part: The Cool Parts Show Bonus
A boring tool that was once 30 kg challenged the performance of the machining center using it. The replacement tool is 11.5 kg, and more efficient as well, thanks to generative design.