Laser Cutting Specialist Develops Large-Travel Additive Approach
For SLM of parts that are multiple feet long, this machine’s build chamber travels throughout the machine area to 3D print the solid part one section at a time.
Share
Read Next
Of the various limiting factors affecting powder-bed additive manufacturing processes such as selective laser melting (SLM), this one is perhaps the most limiting of all: the build size. Big metal parts can be made additively through metal deposition—a coarse process—but the powder-bed metal AM machines that are capable of fine detail often have build envelopes less than one foot square. Large-travel machines might extend this up to about 16 inches square. Any part much longer than this seemingly is not a candidate for being 3D printed in one piece through a powder-bed process.
And yet, the part seen in the photo above was indeed built in one piece through SLM. This 316L stainless steel part is 900 mm long, or just under 3 feet.
The part was made on an SLM machine developed by machine tool builder Adira, based in Vila Nova de Gaia, Portugal. The innovation that makes big parts practical on this machine is a mobile chamber moving across the powder bed so that the large piece can be built in sections. One other interesting detail about the machine that made this part is that it combines both powder-bed and metal-deposition AM into the same platform.
“Three years ago, we saw we needed to get into AM,” says Filipe Coutinho, company product development engineer. More specifically, the company knew it wanted to provide AM for large metal parts—an industrial demand obvious to this company that seemed underserved. As a maker of laser machines for sheet-metal cutting, the company already had expertise with lasers, and was already oriented toward using those lasers across large-travel machines. It set about developing both metal-deposition and powder-bed machines, both of which it is now bringing to market.
With the metal deposition system it developed, the company recognized that a typical use is likely to be building additive features onto existing large workpieces. Adira therefore focused on allowing an easy transition between laser cutting and laser deposition of material. The system the company developed requires a manual change between these operations, but the change is “very fast,” Coutinho says. “You affix the cladding nozzle and center it—that’s it.” The company’s additive machine offering this system therefore could spend much of its time running as a straightforward metalcutting machine until the additive capability is needed.
By contrast, the large-travel SLM system developed by Adira is much more novel relative to other additive machines. One of the challenges of getting to large travels with a powder-bed machine is controlling the environment across such a large volume. Adira accomplished this with a smaller-volume chamber—just under one foot square—that travels the entire machine area and descends onto the powder from above to contain one section of material at a time. Building the sample part shown took about 80 hours, and the chamber was repeatedly in motion all throughout this time. The following video shows the machine movement, with the chamber advancing from section to section with each single build layer of the part:
Adira recently introduced its new additive offerings using a single machine at the Euroblech trade show in Germany, a machine employing both of these additive capabilities. Marrying metal deposition with SLM in one machine was as much a matter of marketing as engineering, Coutinho says; putting both capabilities in one machine created an impressive showcase for the additive introduction. In general, though, users will want either one capability or the other—either deposition or SLM.
Except: Some users might want both, he says. Manufacturing research facilities are an example. With the demonstration machine, Adira has shown it can combine the capabilities, and in testing it has even succeeded in using them together. Laser deposition can add features onto an SLM part (though the reverse is not possible).
Development still continues, he says. There is much yet to do—significant opportunity exists for further advances, particularly on the powder-bed machine. “We're looking at ways to bring more power to the process, to obtain larger controlled spot sizes for higher build rates,” Coutinho says. For large-size parts on a powder-bed machine, enabling the large build is just the start. “For the next stage, to do large parts more cost-effectively, we are going to need more speed.”
Related Content
Seurat: Speed Is How AM Competes Against Machining, Casting, Forging
“We don’t ask for DFAM first,” says CEO. A new Boston-area additive manufacturing factory will deliver high-volume metal part production at unit costs beating conventional processes.
Read More3D Printed Cutting Tool for Large Transmission Part: The Cool Parts Show Bonus
A boring tool that was once 30 kg challenged the performance of the machining center using it. The replacement tool is 11.5 kg, and more efficient as well, thanks to generative design.
Read MoreVulcanForms Is Forging a New Model for Large-Scale Production (and It's More Than 3D Printing)
The MIT spinout leverages proprietary high-power laser powder bed fusion alongside machining in the context of digitized, cost-effective and “maniacally focused” production.
Read MoreVideo: For 3D Printed Aircraft Structure, Machining Aids Fatigue Strength
Machining is a valuable complement to directed energy deposition, says Big Metal Additive. Topology-optimized aircraft parts illustrate the improvement in part performance from machining as the part is being built.
Read MoreRead Next
How Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read MoreNew Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreCarnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read More