Dyndrite Joins ASTM to Provide AM Reference Data
Collaborative effort aims to create shareable reference datasets that drive consistency across the industry, accelerating qualification and adoption of metal additive manufacturing.
Share
Dyndrite has joined the ASTM International Consortium for Materials Data and Standardization (CMDS) initiative which is being run through the ASTM Additive Manufacturing Center of Excellence (AM CoE). The collaborative effort is designed to create shareable reference datasets that can help drive consistency across the industry, helping to accelerating qualification and adoption of metal AM.
Dyndrite is a provider of the GPU-accelerated computation engine used to create next-generation digital manufacturing hardware and software. The company will collaborate with industry members chartered to standardize the requirements for AM materials data generation, and create and manage shared high-pedigree reference datasets.
The company will create shareable standardized designs-of-experiments (DoE) build recipes across all major L-PBF OEM file formats. Dyndrite joins existing members such as AddUp, Auburn University, Boeing, Desktop Metal, EOS, Fraunhofer IAPT, GE Additive, GKN Additive and others.
“Dyndrite believes standardization is a crucial next step in the broader adoption and growth of industrial AM,” says Stephen Anderson, Dyndrite head of strategic relationships. “Whoever we talk to, the clarion call is clear. Our customers and partners all want to see significant acceleration of shared materials data to unlock new AM opportunities and to scale the industry. This is a groundbreaking opportunity to unleash the full power of metal 3D printing.”
To date, individual companies have singularly borne the brunt of materials development costs and regard their results as proprietary for commercial advantage. But this leads to multiple companies wasting dollars with each repetitively doing the same thing. CMDS’ work will help solve these problems by enabling the sharing of materials data at a fundamental level, while still enabling companies to generate IP and differentiate on specific geometry parameter modification.
Dyndrite recently unveiled its first end-user AM application, Dyndrite Materials and Process Development for laser bed powder fusion (LPBF). This GPU-based 3D application was designed for materials and process engineers developing new metal alloys and parts for laser-based 3D metal printing. It takes advantage of the features within Dyndrite’s Accelerated Computation Engine (ACE), including the ability to perform 3D geometric queries in order to detect and optimize for difficult geometric features such as domes, cantilevers, and thin walls. It also offers the ability to speed build rates by easily working with large multiple layer heights and print rates; methods to improve part quality by ensuring material homogeneity and controlling surface roughness; and support strategies said to delivery maximum flexibility. Customers using Dyndrite can also easily create shareable build recipes (Python) that provide all the necessary information required to recreate a build and drive a variety of 3D metal printers, including Aconity, EOS, Renishaw, SLM and others.
“We are pleased that Dyndrite has decided to join the CMDS initiative and prioritize the need to standardize the data workflows needed to generate high-pedigree material data,” says Richard Huff, ASTM director of industry consortia and partnerships. “We are excited to integrate Dyndrite’s solutions to drive consistent application of requirements and maximize efficiency of CMDS data generation activities.”
Dyndrite says it has built tools capable of ensuring quality and traceability through AM component production. “This is increasingly important as the metal AM industry moves to generate foundational material data built upon the Common Data Model,” says Steve Walton, Dyndrite head of product. “Our work enables knowledge transfer of critical material data and pedigree needed for robust characterization of the process-structure-property relationship. Understanding and effectively communicating this concept will greatly increase the adoption of metal AM for production applications.”
Dyndrite will release build recipes that demonstrate how standardized designs-of-experiments (DoE) — based on ASTM data standards — can be made using Dyndrite. ASTM members will be able to use these recipes, or make their own, across all major OEM file formats. These recipes will enable a common framework for build file generation, scan-path strategy exploration and scan-path speed and layer thickness variation, as well as methods for estimating laser(s) loads. By conforming to ASTM data protocols Dyndrite Build recipes will ensure that data is generated and recorded in a standard and repeatable manner, and applicable to downstream processes, such as process qualification and calibration.
- Read how Dyndrite and UPM are working to bring data intelligence to metal 3D printing build plates. The collaboration aims to reduce print failures and enable reliable supply chain for additive manufacturing production.
- Learn about Dyndrite’s collaboration with AMFG for cross-platform 3D metal automated production. AMFG powered by Dyndrite is an integrated solution that is said to unlock the full potential of metal 3D printing by bringing order-to-part automation, eliminating bottlenecks and streamlining the entire production process for increased efficiency and cost savings.
Related Content
Implicit Modeling for Additive Manufacturing
Some software tools now use this modeling strategy as opposed to explicit methods of representing geometry. Here’s how it works, and why it matters for additive manufacturing.
Read MoreFormnext 2022: Ceramics, Robots and Other Perspectives From Near and Far: AM Radio #30
The 2022 edition of Formnext revealed more options and applications for 3D printed ceramics, anticipation of coming automation, established companies entering AM and more. Two editors — one present at the show, and one observing from a distance — compare notes in this episode of AM Radio.
Read MoreSpherene Creates Metamaterial with Geometry Derived from Spheres
An algorithm developed by Spherene Inc. generates Adaptive Density Minimal Surfaces (ADMS) as a self-supporting infill strategy that can be used to reduce mass and manage material properties in 3D printed parts.
Read MoreOvercoming the Bottleneck to Customized Manufacturing: Quoting
Spokbee’s software-as-a-service platform is shaving months off of the quoting and pricing process for 3D printed and other types of configurable products.
Read MoreRead Next
New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MorePostprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.
Read MoreCarnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read More