3D Printing Machine Training
Published

Something More

The integration of manufacturing with product development creates a context that will help additive manufacturing advance.

Share

In the medical device industry, the potential benefits of additive manufacturing are almost outrageously numerous. Creating precise and intricate components through an additive process instead of machining or molding can reduce expense, speed development, allow for cost-effective small batches and even allow for patient customization. Plus, this method of manufacturing provides the designer with geometric freedom—not just the freedom to refine the form to improve functionality, but also the freedom to innovate into areas not currently covered by intellectual property claims.

However, practically no medical inventor knows how to access these benefits. A surgeon devising a new implant or instrument knows surgery, not whether additive production is appropriate or how to design for this choice. Meanwhile, the additive equipment suppliers don’t know how to reach the inventors who are imagining products that could benefit from an additive process.

That is where Innovative Medical Device Solutions (IMDS) enters in. The company aims to help navigate this distance.

Headquartered in Fort Worth, Texas, this contract manufacturer of medical products agreed last year to become a “lighthouse partner” for additive manufacturing machine maker EOS. That is, IMDS will be a beacon for designers who do not yet know that additive manufacturing is what they need. 

The established company has plants in three states. What makes IMDS distinctive is the way it couples this production capacity with in-house expertise related to medical products. The result is “Co-Innovation,” the company’s term for a range of services that includes testing, IP assessment, feasibility studies and regulatory evaluation before a proposed medical device is even considered for production. According to IMDS’s Michael Siemer, additive manufacturing fits right into this model. 

Siemer, the company’s additive manufacturing engineering manager, is based at a Co-Innovation office in Orlando, Florida. Here, IMDS has begun to apply EOS’s direct metal laser sintering to help customers engineer new product designs. Among the part designs that are successfully prototyped, refined and proven out through this process are many that will proceed into full production using this same technology. For examples of ways the company is using additive manufacturing, see these images.

Labeling IMDS is difficult. The company engages customers earlier than manufacturers usually do, helping them develop and validate ideas prior to production. Thus, while the company is a manufacturer, it is also something more. And additive manufacturing makes this “something more” increasingly important. 

That’s because additive manufacturing expands production options. It also pushes forward the choice of what option to use, because accepting or rejecting additive has dramatic implications for design. As a result, additive manufacturing increases the value of bringing innovation and manufacturing together—as IMDS has done. 

In fact, this role of engaging product designers early, so as to guide their work into the appropriate production choice, is so valuable that it seems likely that other manufacturers will move to fill it—not just in medical but in other industries, too. That is, other lighthouses will be raised. Whatever else IMDS might be, it is a model for how additive manufacturing will find its applications.

UPM Additive Solutions
Acquire
Airtech
The World According To
AM Radio
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event

Related Content

Metal

PowderCleanse Concept Delivers In Situ Powder Analysis for Metal 3D Printing

A collaborative project developed a prototype solution for measuring particle size distribution on the production floor, as part of the sieving step typical to additive manufacturing processes using metal powders. 

Read More

Sinter-Based Additive Manufacturing Finds a Place Alongside MIM, Press and Sinter at APG

Powder metallurgy company Alpha Precision Group (APG) is applying a particular class of metal 3D printing technology for both rapid iteration in development and flexibility in production.

Read More

Foundry Lab: How Casting in a Day Will Improve the Design of Metal Parts (Includes Video)

The company’s digital casting process uses 3D printing, but the result is a cast part. By providing a casting faster than a foundry, the company says effective prototyping is now possible for cast parts, as well as bridge production.

Read More
Design

IndyCar's 3D Printed Top Frame Increases Driver Safety

The IndyCar titanium top frame is a safety device standard to all the series' cars. The 3D printed titanium component holds the aeroscreen and protects drivers on the track. 

Read More

Read Next

Implants

Medical Benefits

Part examples from an established manufacturer of medical implants and instruments illustrate the expanded engineering possibilities that additive manufacturing is making possible.

Read More
Casting

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Metal

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
3D printing machine trainings