Reverse Engineering and 3D Printing: A Practical Solution
A contract manufacturer routinely reverse engineers and 3D prints prototypes of aerospace legacy parts for more confident production.
Share
Read Next
Roc-Aire stands out as a “can do” contract manufacturer for aerospace parts known for solving problems and overcoming obstacles. “We strategize with our customers on engineering, materials and processes to make sure the parts we are producing are as good as, if not better than the originals,” says General Manager Jason Collins. This strategy includes using reverse engineering and 3D printing to improve the company’s engineering and build processes and to reduce development time, whether for new parts or maintenance, repair and overhaul (MRO) applications.
Roc-Aire routinely reverse engineers legacy aircraft parts using Verisurf Reverse software, then 3D prints them as high-precision prototypes to evaluate form, fit and mechanical function. The finished prototype is then inspected using the original STL mesh model as the nominal, which maintains a digital workflow throughout the entire process.
“Reverse engineering and 3D printing has proven to be an essential part of our development workflow. We use the high-precision, demonstrable prototypes for much more than just form and fit. Quite often we rely on the prototypes to support customer engineering discussions. Projects move forward more quickly with better end results,” says Collins.
With today’s portable measurement solutions, a non-critical part can be reverse engineered, modeled, produced, inspected and installed with just three visits to the aircraft, all during routine maintenance stops:
- Scan the part to collect reverse engineering data;
- Perform a fit check using 3D printed prototype; and
- Install the new part.
For example, when parts for an older aircraft need to be replaced, oftentimes no spares, CAD data or original tooling are available. After years of use the original design specifications for the parts, such as duct work, may no longer fit as designed. In some cases, an originally designed part may have a design flaw that has been amended. In each case, reverse engineering and product realization provide practical ways for engineers to identify problems and apply recommended solutions. A part that would typically take eight to 16 weeks to create, can now be produced as a high-precision model in just a couple of days. The customer is then able to do a fit check using the model and approve production with confidence.
The process is straightforward. First the original part is disassembled and each component carefully reverse engineered using Verisurf software. Depending on the environment, the data can be captured using a CMM or portable CMM with either a touch probe or laser scanner head. “Contact probing provides greater measurement accuracy over non-contact scanning. Non-contact scanning is typically better for checking large surface areas for deviations or capturing/inspecting complex surface profiles,” says Collins.
Verisurf Reverse Software converts the captured point cloud data into STL mesh models suitable for 3D printing and again into 3D solid models for export to popular CAD formats. Design modifications are then made and final prototype components output to a Stratasys Dimension 1200es 3Dprinter.
Following design review and approval, the 3D prototype can be used as a representative model for subcontractors involved in the manufacturing process, such as machining, welding, coating and final assembly. “No number of drawings or computer models can replace the value of a 3D part to fully understand design intent, avoid costly mistakes and speed production,” says Collins.
Related Content
At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?
The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.
Read MoreDMG MORI: Build Plate “Pucks” Cut Postprocessing Time by 80%
For spinal implants and other small 3D printed parts made through laser powder bed fusion, separate clampable units resting within the build plate provide for easy transfer to a CNC lathe.
Read MoreVulcanForms Is Forging a New Model for Large-Scale Production (and It's More Than 3D Printing)
The MIT spinout leverages proprietary high-power laser powder bed fusion alongside machining in the context of digitized, cost-effective and “maniacally focused” production.
Read More10 Important Developments in Additive Manufacturing Seen at Formnext 2022 (Includes Video)
The leading trade show dedicated to the advance of industrial 3D printing returned to the scale and energy not seen since before the pandemic. More ceramics, fewer supports structures and finding opportunities in wavelengths — these are just some of the AM advances notable at the show this year.
Read MoreRead Next
New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreHow Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read More3MF File Format for Additive Manufacturing: More Than Geometry
The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.
Read More