Aitrtech
Published

BLT Supports Successful Flight and Recovery Test of Longyun Liquid Oxygen-Methane Engine

This 10-km-level test represents China's largest scale vertical takeoff and landing (VTOL) flight trial for reusable rockets to date.

Share

Longyun liquid oxygen methane engine completes 10-km-level flight recovery test. Source: BLT

Longyun liquid oxygen methane engine completes 10-km-level flight recovery test. Source: BLT

On June 23, 2024, JiuZhou Yunjian (Beijing) Space Technology Co. Ltd. achieved a significant milestone with the successful completion of a 10-km-level flight and recovery test of its Longyun liquid oxygen-methane engine at the Jiuquan Dongfeng Launch Site. This maiden flight evaluation showcased stable performance across all parameters, including flawless execution of startup, shutdown sequences, thrust vectoring and modulation.

This test represents China's largest scale vertical takeoff and landing (VTOL) flight trial for reusable rockets to date. It marks the inaugural deployment of a domestically developed deep-throttleable liquid oxygen-methane engine in a 10-km-level return flight. The test rigorously validated the VTOL configuration of a 3.8-meter diameter rocket body, showcasing advancements in high-load landing cushioning technology; large-thrust, highly throttleable, reusable propulsion technology; and precision navigation and guidance control for return landings, along with advanced health monitoring technology.

The BLT-S450. Source: BLT

The BLT-S450. Source: BLT

BLT played a crucial role in this achievement by providing extensive metal additive manufacturing (AM) support. This included the development of critical components such as thrust chamber parts and turbopump components, leveraging innovative approaches to enhance production efficiency and component quality.

Innovation for Critical Engine Components

The thrust chamber cap — integral to the functionality of the liquid oxygen-methane engine by transmitting thrust and housing propellants — has historically posed manufacturing challenges due to its reliance on segmented welding methods. These methods are susceptible to cracking under extreme conditions of temperature and pressure. Addressing these challenges, BLT opted for the high-temperature alloy In718 for its superior properties. Utilizing the BLT-S450 printing machine, BLT achieved integrated manufacturing of the thrust chamber cap in just seven days. This approach not only ensures exceptional precision and product quality but also accelerates manufacturing time lines, facilitating rapid technological advancements and enhanced development efficiency for our clients.

Advances in Turbopump Components

From the outset, BLT integrated AM principles into the development of turbopump components. Collaborating closely with clients, BLT successfully produced intricate parts such as oxygen and methane pump impeller and casing blanks. These components feature complex blade structures, demanding precise blade profiles and surface roughness. Metal AM technology employed by BLT ensures the efficient and high-quality production of these parts.

For example, the BLT-S450 equipment enables batch manufacturing of six high-temperature alloy In718 oxygen pump impeller blanks per run, with each part requiring an average production time of approximately 52 hours. These parts exhibit consistent quality and performance, striking a balance between superior functionality and economic feasibility for our clients.

Components crafted using BLT’s metal laser powder bed fusion (LPBF) technology with high-temperature alloy In718 exhibit superior surface quality, robust mechanical properties, density and internal defect control compared to conventional methods. These components meet stringent technical requirements, including room and low-temperature tensile strength exceeding 1,300 MPa and 1,700 MPa respectively; yield strengths surpassing 1,000 MPa and 1,200 Mpa; and elongation rates exceeding 20% — all validated through rigorous client assessments. Ultimately, BLT delivered a batch of high-quality components to clients on schedule, aiding them in completing flight and recovery missions effectively.

Having served more than 30 clients in the commercial aerospace sector, BLT says it remains dedicated to delivering unparalleled support. Its comprehensive offerings span optimized design, technical consultation, component development and robust equipment support. Currently, pivotal components in multiple commercial aerospace projects are undergoing mass AM production, underscoring BLT’s commitment to advancing industry standards.

Turnkey Solutions in Metal Additive Manufacturing

Leveraging its extensive research, development capabilities and production expertise, BLT continues to innovate and address technical challenges. It offers turnkey AM solutions to clients across diverse sectors, encompassing simulation and optimization consulting, technical support, research assistance, equipment support, raw material supply, parts printing and process parameter development.

Airtech
Acquire
SolidCAM Additive - Upgrade Your Manufacturing
World According To
North America’s Premier Molding and Moldmaking Event
The Cool Parts Show
AM Radio

Related Content

LFAM

3D Printing Brings Sustainability, Accessibility to Glass Manufacturing

Australian startup Maple Glass Printing has developed a process for extruding glass into artwork, lab implements and architectural elements. Along the way, the company has also found more efficient ways of recycling this material.

Read More
Polymer

Concept Sneaker Boasts One-Piece 3D Printed TPU Construction

The Reebok x Botter Concept Sneaker Engineered by HP premiered at Paris Fashion Week, hinting at manufacturing possibilities for the future of footwear.

Read More
Lightweighting

GE Additive Helps Build Large Metal 3D Printed Aerospace Part

The research is part of an initiative to develop more fuel-efficient air transport technologies as well as a strong, globally competitive aeronautical industry supply chain in Europe.

Read More
LFAM

Sustainable Furniture Company Model No. Maintains Product Focus with Switch from DIY to Industrial 3D Printers

The startup founded in 2018 has matured in its product offerings as well as its manufacturing equipment, moving from homegrown 3D printers to industrial large-format machines.

Read More

Read Next

Metal

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
Inspection & Measurement

Profilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing

UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing. 

Read More

Crushable Lattices: The Lightweight Structures That Will Protect an Interplanetary Payload

NASA uses laser powder bed fusion plus chemical etching to create the lattice forms engineered to keep Mars rocks safe during a crash landing on Earth.

Read More
Airtech International Inc.