Aitrtech
Published

BLT Supports Successful Flight and Recovery Test of Longyun Liquid Oxygen-Methane Engine

This 10-km-level test represents China's largest scale vertical takeoff and landing (VTOL) flight trial for reusable rockets to date.

Share

Longyun liquid oxygen methane engine completes 10-km-level flight recovery test. Source: BLT

Longyun liquid oxygen methane engine completes 10-km-level flight recovery test. Source: BLT

On June 23, 2024, JiuZhou Yunjian (Beijing) Space Technology Co. Ltd. achieved a significant milestone with the successful completion of a 10-km-level flight and recovery test of its Longyun liquid oxygen-methane engine at the Jiuquan Dongfeng Launch Site. This maiden flight evaluation showcased stable performance across all parameters, including flawless execution of startup, shutdown sequences, thrust vectoring and modulation.

This test represents China's largest scale vertical takeoff and landing (VTOL) flight trial for reusable rockets to date. It marks the inaugural deployment of a domestically developed deep-throttleable liquid oxygen-methane engine in a 10-km-level return flight. The test rigorously validated the VTOL configuration of a 3.8-meter diameter rocket body, showcasing advancements in high-load landing cushioning technology; large-thrust, highly throttleable, reusable propulsion technology; and precision navigation and guidance control for return landings, along with advanced health monitoring technology.

The BLT-S450. Source: BLT

The BLT-S450. Source: BLT

BLT played a crucial role in this achievement by providing extensive metal additive manufacturing (AM) support. This included the development of critical components such as thrust chamber parts and turbopump components, leveraging innovative approaches to enhance production efficiency and component quality.

Innovation for Critical Engine Components

The thrust chamber cap — integral to the functionality of the liquid oxygen-methane engine by transmitting thrust and housing propellants — has historically posed manufacturing challenges due to its reliance on segmented welding methods. These methods are susceptible to cracking under extreme conditions of temperature and pressure. Addressing these challenges, BLT opted for the high-temperature alloy In718 for its superior properties. Utilizing the BLT-S450 printing machine, BLT achieved integrated manufacturing of the thrust chamber cap in just seven days. This approach not only ensures exceptional precision and product quality but also accelerates manufacturing time lines, facilitating rapid technological advancements and enhanced development efficiency for our clients.

Advances in Turbopump Components

From the outset, BLT integrated AM principles into the development of turbopump components. Collaborating closely with clients, BLT successfully produced intricate parts such as oxygen and methane pump impeller and casing blanks. These components feature complex blade structures, demanding precise blade profiles and surface roughness. Metal AM technology employed by BLT ensures the efficient and high-quality production of these parts.

For example, the BLT-S450 equipment enables batch manufacturing of six high-temperature alloy In718 oxygen pump impeller blanks per run, with each part requiring an average production time of approximately 52 hours. These parts exhibit consistent quality and performance, striking a balance between superior functionality and economic feasibility for our clients.

Components crafted using BLT’s metal laser powder bed fusion (LPBF) technology with high-temperature alloy In718 exhibit superior surface quality, robust mechanical properties, density and internal defect control compared to conventional methods. These components meet stringent technical requirements, including room and low-temperature tensile strength exceeding 1,300 MPa and 1,700 MPa respectively; yield strengths surpassing 1,000 MPa and 1,200 Mpa; and elongation rates exceeding 20% — all validated through rigorous client assessments. Ultimately, BLT delivered a batch of high-quality components to clients on schedule, aiding them in completing flight and recovery missions effectively.

Having served more than 30 clients in the commercial aerospace sector, BLT says it remains dedicated to delivering unparalleled support. Its comprehensive offerings span optimized design, technical consultation, component development and robust equipment support. Currently, pivotal components in multiple commercial aerospace projects are undergoing mass AM production, underscoring BLT’s commitment to advancing industry standards.

Turnkey Solutions in Metal Additive Manufacturing

Leveraging its extensive research, development capabilities and production expertise, BLT continues to innovate and address technical challenges. It offers turnkey AM solutions to clients across diverse sectors, encompassing simulation and optimization consulting, technical support, research assistance, equipment support, raw material supply, parts printing and process parameter development.

Polymer Perspective
An ad for Formnext Chicago on April 8-10, 2025.
I Am a MatchMaker
Imagine Create Repeat
Airtech
AM Radio
The Cool Parts Show

Related Content

Polymer

Copper, New Metal Printing Processes, Upgrades Based on Software and More from Formnext 2023: AM Radio #46

Formnext 2023 showed that additive manufacturing may be maturing, but it is certainly not stagnant. In this episode, we dive into observations around technology enhancements, new processes and materials, robots, sustainability and more trends from the show. 

Read More
LFAM

Video: AM for Repair of Large Shafts

Wind power shafts that might once have been scrapped are now returned to service. See the robotic directed energy deposition (DED) and shaft preheating system developed by Ikergune, Izadi and Talens.

Read More
Ceramic

Multimaterial 3D Printing with Conventional Powder Metallurgy

Unbound sand serves as temporary, reusable molds for metal powders in Grid Logic’s 3D printing process.  

Read More
FFF

3D Printing Brings Sustainability, Accessibility to Glass Manufacturing

Australian startup Maple Glass Printing has developed a process for extruding glass into artwork, lab implements and architectural elements. Along the way, the company has also found more efficient ways of recycling this material.

Read More

Read Next

Polymer

Video: Orbit X Pro Football Helmet Uses 3D Printed Lattices

The lightweight helmet from Xenith will be used by NFL and collegiate football players beginning in fall 2024.

Read More
Production

AM Workshop at IMTS: Succeeding With Powder Bed Fusion

A half-day event at the International Manufacturing Technology Show focuses on tactics for success for machine shops and other manufacturers preparing to embrace production 3D printing via powder bed fusion.

Read More
Brackets

To Improve Performance of Compression Molded Composites, Add 3D Printed Preforms

9T Labs' Additive Fusion Technology enables the manufacture of composite structures with as much or as little reinforcement as is necessary, using 3D printed continuous fiber preforms to add strength just where needed. 

Read More
Airtech International Inc.
;