SolidCAM Additive - Upgrade Your Manufacturing
Published

High-Frequency Production

The additive process that grew out of ultrasonic welding provides an efficient way to produce complex work, including parts with embedded components and even parts made from dissimilar metals.

Share

To gage how close additive manufacturing is to becoming a mainstream option for making metal parts, it is interesting to note this detail: Ultrasonic additive manufacturing machines from Fabrisonic of Columbus, Ohio, are programmed using a machining center’s CAM software. 

 
Specifically, the machines are programmed using PowerMill software from Delcam. With the software company’s help, Fabrisonic wrote a module (SonicCAM) that essentially turns the CAM algorithms inside-out. Instead of generating paths that remove material, the module generates paths that add material.
 
These same machines use conventional machining tool paths as well. A hybrid approach to part production combines additive and subtractive processing in one machine. The ultrasonic process builds metal workpieces by fusing and stacking 1-inch-wide strips. Then, where the design of the part calls for fine detail, a CNC milling spindle enters into the cycle. 
 
Using additive and subtractive processes together in this way overcomes multiple problems that potentially limit additive metal production. First, parts produced this way do not necessarily need subsequent operations. On this machine, the cycle can create a finished part. Second, putting down the material in 1-inch-wide strips enables the machine to achieve a build rate of 20 to 60 cubic inches per hour (depending on part complexity). This fast build rate means parts can be created quickly, starting with just a spool of material. To provide for such big parts, the largest Fabrisonic machine offers a work envelope of 6 by 6 by 3 feet.
 
Welding Process
 
But why “ultrasonic”? What is the meaning and the relevance of this term? A machining professional might not know, because ultrasonic additive manufacturing grew out of welding instead. Ultrasonic welding uses high-frequency vibration to join surfaces without melting. By welding layer upon layer upon layer in this way, the process can build solid parts. The Columbus-based Edison Welding Institute (EWI) has been developing this additive technology for years, and Fabrisonic is an entity newly formed by EWI to bring ultrasonic additive manufacturing to market.
 
There are few users yet. The company has targeted universities for its earliest sales because universities perform trials and generate data that will lead to a better understanding of the process’s capabilities. But company president Mark Norfolk says many of the potential applications are already clear.
 
One is complex metal parts, including mold and die tooling. Like other additive metal manufacturing methods, the ultrasonic process makes it possible to build mold components with intricate internal cooling channels that follow the mold’s geometry. (For video of a mold like this being created, see “Learn More” on the next page). In addition, because the process builds in layers, it can make very sharp features that would normally need EDM. For example, this machine could mill a 0.005-inch-radius corner, then build a 5-inch-high wall above it. The resulting feature would be difficult to achieve through machining alone.
 
Combining Metals
 
The more unusual potential applications draw on the distinctive advantages of the ultrasonic process. This metal-strip approach to layering can easily be paused to allow a user to add an element between layers, Mr. Norfolk says. Embedded sensors are one possibility. Ceramic mesh could also be applied this way, with the welded metal flowing around the mesh to create a metal-matrix composite. In fact, adding elements with thermal expansion characteristics very different from the host metal could provide control over the thermal response of the metal component.
 
Perhaps the most promising application area results from the fact that ultrasonic welding binds surfaces without melting. The solid-state weld provides a reliable way to join dissimilar metals. Two very different metals—titanium and aluminum, say—could be combined in shuffled layers to create a structure that mixes the properties of both. 
 
Alternatively, Mr. Norfolk says bonding a hard metal outer surface to a structure made from a lighter metal could provide a new means of manufacturing parts that require both durability and light weight, such as military armor. In applications needing tailored properties, one property could be obtained from one metal and the other property from another, without the metals having to liquefy and mix. 
 
Airtech
SolidCAM Additive - Upgrade Your Manufacturing
Acquire
World According To
AM Radio
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event

Related Content

Lightweighting

This Drone Bird with 3D Printed Parts Mimics a Peregrine Falcon: The Cool Parts Show #66

The Drone Bird Company has developed aircraft that mimic birds of prey to scare off problem birds. The drones feature 3D printed fuselages made by Parts on Demand from ALM materials. 

Read More
Sponsored

3D Printing with Plastic Pellets – What You Need to Know

A few 3D printers today are capable of working directly with resin pellets for feedstock. That brings extreme flexibility in material options, but also requires greater knowledge of how to best process any given resin. Here’s how FGF machine maker JuggerBot 3D addresses both the printing technology and the process know-how.

Read More
OEMs

At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?

The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.

Read More
Implants

DMG MORI: Build Plate “Pucks” Cut Postprocessing Time by 80%

For spinal implants and other small 3D printed parts made through laser powder bed fusion, separate clampable units resting within the build plate provide for easy transfer to a CNC lathe.

Read More

Read Next

Postprocessing

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
Polymer

3D Printed Polymer EOAT Increases Safety of Cobots

Contract manufacturer Anubis 3D applies polymer 3D printing processes to manufacture cobot tooling that is lightweight, smooth and safer for human interaction.

Read More
Metal

Profilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing

UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing. 

Read More
SolidCAM Additive - Upgrade Your Manufacturing