Five-Axis Machining Complements AM
Intricate components made through AM go directly to a five-axis machine as part of a service combining additive and subtractive processing.
What machining capability is the right complement to additive manufacturing? For Star Prototype, the answer is a UMC-750 five-axis vertical machining center from Haas Automation (seen here when it was newly purchased this summer) programmed using Delcam’s PowerMill software.
The British-owned company based in Guandong Province, China, combines metal 3D printing and five-axis machining to quickly deliver complex, low-volume components that might previously have required the work of two separate suppliers. It calls this service AddSub Manufacturing.
“Many metal 3D printed parts are no longer used as prototypes but as complex low-volume manufactured components,” says Gordon Styles, president of Star Prototype. “As a result, many of these parts need certain high-precision features that are virtually impossible to produce with 3D printing alone.”
The company uses a Renishaw AM250 direct metal laser melting machine to produce dense, complex metal parts in titanium, stainless steel and aluminum. The challenge of machining those parts is not the amount of stock to remove, because the parts are so near to net shape. The machining challenge instead comes from the geometric complexity that additive permits, which led to the recent purchase of the five-axis machine. (Indeed, the connection between complex machining and additive manufacturing is a point Delcam recently highlighted in a test case with additive production.)
Star uses five-axis machining to add features to additive parts such as mating faces, precision bores and tapped holes. Whenever possible, the company says, parts are built on the AM250 in a useful orientation for machining, with supports designed so that the build plate can be transferred directly to the five-axis machine.
Related Content
-
8 Cool Parts From Formnext 2023: The Cool Parts Show #65
New additive manufacturing technologies on display at Formnext were in many cases producing notable end-use components. Here are some of the coolest parts we found at this year’s show.
-
Possibilities From Electroplating 3D Printed Plastic Parts
Adding layers of nickel or copper to 3D printed polymer can impart desired properties such as electrical conductivity, EMI shielding, abrasion resistance and improved strength — approaching and even exceeding 3D printed metal, according to RePliForm.
-
Postprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.