Wayland Additive's NeuBeam PBF Process Creates Parts Free of Residual Stresses
Wayland Additive has been working on the development of an entirely new powder bed fusion (PBF) process for metal AM called NeuBeam.
Wayland Additive has been working on the development of an entirely new powder bed fusion (PBF) process for metal AM that minimizes the existing limitations that current users have to work around with laser PBF and traditional eBeam PBF. Wayland Additive developed NeuBeam to provide an entirely new PBF process that is said to offer the best of both laser and eBeam PBF without the compromises to open up greater potential for more industrial applications.
The new NeuBeam process is an eBeam PBF process that effectively neutralizes the charge accumulation generated by the electron beam. The NeuBeam process is said to enable metallurgical requirements to be tailored to application requirements rather to maintain the print process within the narrow bounds permitted by the process. These process capabilities, along with improved ease of process development, opens up the use of a much wider range of metal materials, the company says.
Wayland Additive developed NeuBeam to provide an entirely new PBF process.
Despite a couple of commonalities between EBM and NeuBeam — EBM and NeuBeam are fundamentally different. According to the company, the charging issues that make EBM unstable are not issues with NeuBeam. NeuBeam is a hot part process and not a hot bed process. The high temperatures are only applied to the part not the bed which ensures free-flowing powder post-build and reduced energy consumption, the company says.
The NeuBeam process is said to overcome many of the limitations for manufacturing large complex metal components, namely no residual thermal stresses, no gas cross-flow, and a simplified powder removal process. It also offers significant advantages over other AM technologies with built-in real-time in-process monitoring, allowing for rapid material development or tuning of microstructures by adapting the solidification during manufacture. With NeuBeam the process temperature is not constrained by sintering the powder bed, allowing the process temperature to be optimized to the material microstructure and/or the application, the company says.
Related Content
-
10 Important Developments in Additive Manufacturing Seen at Formnext 2022 (Includes Video)
The leading trade show dedicated to the advance of industrial 3D printing returned to the scale and energy not seen since before the pandemic. More ceramics, fewer supports structures and finding opportunities in wavelengths — these are just some of the AM advances notable at the show this year.
-
AM 101: What Is Binder Jetting? (Includes Video)
Binder jetting requires no support structures, is accurate and repeatable, and is said to eliminate dimensional distortion problems common in some high-heat 3D technologies. Here is a look at how binder jetting works and its benefits for additive manufacturing.
-
This Year I Have Seen a Lot of AM for the Military — What Is Going On?
Audience members have similar questions. What is the Department of Defense’s interest in making hardware via 3D printing over conventional methods? Here are three manufacturing concerns that are particular to the military.