USNC Acquires Two Desktop Metal Printers for Nuclear Energy Solutions
The printers are said to 3D print advanced materials such as silicon carbide (SiC) — a technical ceramic with extreme environmental stability often used in aerospace, armor, plasma shield and high-temperature applications.
The X-Series of binder jetting systems are said to 3D print advanced materials such as silicon carbide (SiC) — a technical ceramic with extreme environmental stability often used in aerospace, armor, plasma shield and high-temperature applications. Photo Credit: Desktop Metal
Ultra Safe Nuclear Corporation (USNC), a developer of Micro Modular Reactor (MMR) systems for the production of safe, commercially competitive, clean and reliable nuclear energy, has acquired two Desktop Metal 3D printers. The printers are from the recently updated X-Series line of binder jetting systems and the company says it has plans to acquire two additional machines later this year.
Desktop Metal’s X-Series line of binder jet 3D printing systems for metal and ceramic powders includes the InnoventX, X25Pro and X160Pro. The company says these printers can 3D print advanced materials such as silicon carbide (SiC) — a technical ceramic with extreme environmental stability often used in aerospace, armor, plasma shield and high-temperature applications.
According to the company, USNC transforms highly pure, crystalline, nuclear-grade SiC into the shapes and forms that can safely surround a nuclear fuel particle, enabling USNC’s fully ceramic micro-encapsulated (FCM) fuel innovation. It is said the technology is a key component of USNC’s fuel design for use in a new generation of advanced reactors.
“Binder jetting is a low-cost, high-yield, reliable process for our complex serial production. The advanced material capability of the X-Series machines is fundamental to our innovative approach to fuel design,” says Dr. Kurt A. Terrani, executive vice president of USNC’s Core Division. He previously led multiple research and development efforts at Oak Ridge National Laboratory.
The X-Series line was designed to scale applications from research and development to mass production with repeatable open parameters and performance across a range of machines. With the small-format InnoventX already installed at the company’s facility in Salt Lake City, Utah, USNC has developed its next-generation nuclear fuel matrix to be scaled up on the larger X25Pro and X160Pro systems.
“Driving mass adoption of additive manufacturing requires scalable systems capable of printing high-performance materials that enable the most innovative applications,” said Ric Fulop, co-founder and CEO of Desktop Metal. “We’re proud to support the mission of USNC with flexible binder jetting technology that takes customers all the way to production and helps play a role in solving global-scale problems with additive manufacturing solutions.”
Related Content
-
3D Printed Lattice for Mars Sample Return Crash Landing: The Cool Parts Show Bonus
NASA Jet Propulsion Laboratory employs laser powder bed fusion additive manufacturing plus chemical etching to create strong, lightweight lattice structures optimized to protect rock samples from Mars during their violent arrival on earth.
-
This Drone Bird with 3D Printed Parts Mimics a Peregrine Falcon: The Cool Parts Show #66
The Drone Bird Company has developed aircraft that mimic birds of prey to scare off problem birds. The drones feature 3D printed fuselages made by Parts on Demand from ALM materials.
-
New Zeda Additive Manufacturing Factory in Ohio Will Serve Medical, Military and Aerospace Production
Site providing laser powder bed fusion as well as machining and other postprocessing will open in late 2023, and will employ over 100. Chief technology officer Greg Morris sees economic and personnel advantages of serving different markets from a single AM facility.