3D Printing Machine Training
Published

EOS Helps Strengthen Indiana Tech's STEM Program

Indiana Tech acquires second EOS additive manufacturing system as part of a $21.5 million expansion of its Zollner Engineering Center and STEM educational programming.

Share

EOS M 290 system at Indiana Tech Talwar College of Engineering and Computer Sciences. Photo Credit: EOS

EOS M 290 system at Indiana Tech Talwar College of Engineering and Computer Sciences. Photo Credit: EOS

Indiana Tech has acquired its second EOS industrial 3D printer, the Formiga P 110 Velocis, as part of its engineering center expansion and renovation for the Talwar College of Engineering and Computer Sciences program. The polymer selective laser sintering (SLS) 3D printer complements Indiana Tech’s prior investment of its EOS M 290 Direct Metal Laser Sintering (DMLS) metal 3D printer in September 2022, as a tool for its biomedical and advanced manufacturing programming, and new additive manufacturing (AM) certificate.

The university began acquiring AM technology as part of its large $21.5 million expansion and renovation of the Zollner Engineering Center, increasing educational access to state-of-the-art engineering training and equipment within the university’s Talwar College of Engineering and Computer Sciences programs. The expansion is set to be complete in October 2023, nearly doubling the size from its previous structure.

Indiana Tech plans to provide a unique advantage to engineering students with the purchase of EOS’ technology, making it one of the only universities in Indiana to provide access to both polymer and metal AM technology. As the Talwar College of Engineering and Computer Sciences expands, Indiana Tech plans to increase AM educational offerings and programming for incoming students.

“3D printing will have a massive impact on advanced manufacturing by decentralizing production, improving product customization and resource efficiency, and reducing complexity,” says Dr. Ying Shang, Indiana Tech’s dean of the Talwar College of Engineering and Computer Sciences. “As northeast Indiana grows its advanced manufacturing potential, the region’s workforce will need new knowledge and skillsets in additive manufacturing. With the two new additions of innovative EOS 3D printers and additional 3D printers for carbon fiber and other composite materials, Indiana Tech will become the leading institution in the nation for developing new talent in additive manufacturing for automotive, medical device, aeronautical applications and more.”

The purchase of the EOS M 290 and Formiga P 110 Velocis systems were made possible, in part, by support from a private alumni donor and the university’s grant awards, specifically the U.S. Department of Commerce’s Economic Development Administration (EDA) $1.5 million grant to support workforce training efforts. The EDA funding is a part of the American Rescue Plan Economic Adjustment Assistance program, expected to create 700 jobs and retain 100 as a direct result of purchasing technical equipment, such as EOS AM systems.

“As additive manufacturing begins to play a larger role in U.S. manufacturing, it is crucial we prepare the next generation of STEM for the shift in engineer training,” says Greg Hayes, senior vice president of applied technology at EOS North America. “Amid ongoing AM adoption and government investment into the technology, we feel confident that use of our printers will give Indiana Tech students the tools and competitive advantage needed to bolster the workforce and push the boundaries of what we can accomplish with industrial 3D printing.”


Acquire
SolidCAM Additive - Upgrade Your Manufacturing
World According To
Airtech
North America’s Premier Molding and Moldmaking Event
AM Radio
The Cool Parts Show

Related Content

Metal

Possibilities From Electroplating 3D Printed Plastic Parts

Adding layers of nickel or copper to 3D printed polymer can impart desired properties such as electrical conductivity, EMI shielding, abrasion resistance and improved strength — approaching and even exceeding 3D printed metal, according to RePliForm.

Read More
Polymer

3D Printed Spine Implants Made From PEEK Now in Production

Medical device manufacturer Curiteva is producing two families of spinal implants using a proprietary process for 3D printing porous polyether ether ketone (PEEK).

Read More
Implants

FDA-Approved Spine Implant Made with PEEK: The Cool Parts Show #63

Curiteva now manufactures these cervical spine implants using an unusual 3D printing method: fused strand deposition. Learn how the process works and why it’s a good pairing with PEEK in this episode of The Cool Parts Show. 

Read More
Polymer

Concept Sneaker Boasts One-Piece 3D Printed TPU Construction

The Reebok x Botter Concept Sneaker Engineered by HP premiered at Paris Fashion Week, hinting at manufacturing possibilities for the future of footwear.

Read More

Read Next

Inspection & Measurement

Profilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing

UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing. 

Read More

Crushable Lattices: The Lightweight Structures That Will Protect an Interplanetary Payload

NASA uses laser powder bed fusion plus chemical etching to create the lattice forms engineered to keep Mars rocks safe during a crash landing on Earth.

Read More
Basics

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
3D printing machine trainings