Optimizing Mass and Material
Most machined parts have more material than necessary. This is true even after all of the cutting is finished.
Machined parts often have more material than necessary. This is true even after all of the cutting is finished. In fact, it might be that most machined parts have more material than necessary. This is true because the part, in general, only has to mate with its required connections and carry its required stresses. Any material not necessary for these purposes is superfluous.
Still, we don’t usually know what that unneeded material is. We don’t typically model a part’s precise pattern of stresses to find out, because the information would have no practical use. A part tailored to the stresses it actually carries might look like the nearer of the two parts in this photo. Machining offers no practical way to make such an odd shape. However, additive manufacturing does.
This part, in both of the versions seen here, is a component of a hinge for a maintenance access hatch on an aircraft. The farther version is the traditional form of this part, produced through casting and machining. By contrast, the nearer version was optimized for its function using software from Altair then built additively using a direct metal laser sintering machine from EOS. Producing an optimal design in this way resulted in a part that weighs less and requires less material, even though it is still every bit as functional as the part that was machined. For much more on the redesign of this part for additive manufacturing, see this paper.
Related Content
-
Video: For 3D Printed Aircraft Structure, Machining Aids Fatigue Strength
Machining is a valuable complement to directed energy deposition, says Big Metal Additive. Topology-optimized aircraft parts illustrate the improvement in part performance from machining as the part is being built.
-
3D Printed Titanium Replaces Aluminum for Unmanned Aircraft Wing Splice: The Cool Parts Show #72
Rapid Plasma Deposition produces the near-net-shape preform for a newly designed wing splice for remotely piloted aircraft from General Atomics. The Cool Parts Show visits Norsk Titanium, where this part is made.
-
3D Printed NASA Thrust Chamber Assembly Combines Two Metal Processes: The Cool Parts Show #71
Laser powder bed fusion and directed energy deposition combine for an integrated multi-metal rocket propulsion system that will save cost and time for NASA. The Cool Parts Show visits NASA’s Marshall Space Flight Center.