Molten Spray Moldmaking
Rapid solidification creates mold and die tooling that is harder than heat treated components, within build times that are faster than machining.
[Editor's note: RSP Tooling, the company mentioned in the article below, no longer has a license agreement related to the Rapid Solidification Process (RSP). Premier Technology (www.ptius.com) now has a license agreement with Idaho National Laboratory related to RSP. A representative of Premier Technology told me the company's aim is to develop and sell machinery for producing large tooling and dies with this technology, but the timeframe for achieving this is unknown. Therefore, the article below is presented as information on an additive manufacturing approach that is likely to be available in the future. —PZ]
Because additive manufacturing processes are not affected by geometric detail, they ought to be ideal for making molds and dies. The complex features of these parts that slow down machining do not have to affect the speed of a process that builds parts layer by layer. However, size is a problem. Equipment for building additive metal parts is typically much more expensive than comparably sized CNC machine tools. Cost, among other factors, prevents additive equipment from scaling up to the size of a large mold or die.
Related Content
Freeform: Binder Jetting Does Not Change the Basics of Manufacturing
Rather than adapting production methodologies to additive manufacturing, this Pennsylvania contract manufacturer adapts AM to production methodologies. In general, this starts with conversation.
Read MoreNew Zeda Additive Manufacturing Factory in Ohio Will Serve Medical, Military and Aerospace Production
Site providing laser powder bed fusion as well as machining and other postprocessing will open in late 2023, and will employ over 100. Chief technology officer Greg Morris sees economic and personnel advantages of serving different markets from a single AM facility.
Read MorePossibilities From Electroplating 3D Printed Plastic Parts
Adding layers of nickel or copper to 3D printed polymer can impart desired properties such as electrical conductivity, EMI shielding, abrasion resistance and improved strength — approaching and even exceeding 3D printed metal, according to RePliForm.
Read MorePostprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.
Read MoreRead Next
Bike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts
Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.
Read MorePostprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.
Read More3D Printed Polymer EOAT Increases Safety of Cobots
Contract manufacturer Anubis 3D applies polymer 3D printing processes to manufacture cobot tooling that is lightweight, smooth and safer for human interaction.
Read More