Integrating Additive Without Inhibiting Machining
Can AM be added to a CNC machine tool while keeping the machine’s cutting capabilities fully intact?
Share
Read Next
Mitsui Seiki is a machine tool builder that aims to excel in the area of precision. It provides machines, often custom-engineered, to meet CNC machining challenges related to high-value parts with particularly demanding tolerances. The company’s introduction of additive manufacturing as a capability it can now deliver might therefore seem like an odd fit, since additive by itself can’t achieve anything like the fine tolerances that machining can.
But Robb Hudson, technology and business development manager for the company, says additive manufacturing is an addition to machining that brings both design freedom and process efficiency to complement machining’s precision. And by consolidating more of a part’s processing into a single machine, it potentially reduces part handling, which facilitates precision as well. During the past year or more that the company has been preparing to come to market with additive capability, he says, it has been experimenting with how to use metal cutting and metal deposition effectively within the same machine tool, without having to compromise the effectiveness or promise of either capability.
Mr. Hudson says essentially any of the company’s machines can now be made available as a hybrid system, capable of both additive and subtractive operations. A hybrid model of the company’s Vertex five-axis machining center will now be a standard product. The additive capability comes from the company’s partnership with Hybrid Manufacturing Technologies, the firm offering a system for integrating additive manufacturing capability into an existing machine tool. The Hybrid head performs metal additive manufacturing through laser cladding, feeding metal powder into a pool that is melted by a laser. The head mounts in the machine’s spindle using a toolholder, and when it is not in use, it waits in the machine’s carousel alongside other tools.
Yet integrating additive capability into the machine is not as simple as adding this head. The machine itself is also modified for safe use of the laser, as well as to enable powder flow. And if the full machining capabilities are to remain available, then new processing techniques along with other machine modifications are in order, too.
For example, what about coolant? Generally, coolant and lasers don’t mix, Mr. Hudson observes. But as part of the testing of additive/subtractive processing at Mitsui Seiki’s headquarters in Japan, the company has refined a process for using flood coolant extensively within a cycle that also includes additive layering. In this process, an air blow-off operation removes much of the volume of coolant still clinging to the part, followed by the laser applied at a wide focus to evaporate the rest. The surface dried in this way is ready for a new feature to be grown onto it through laser cladding.
A similarly important consideration is protection of the machine. Because some metal powder invariably escapes, preserving the machining precision demands ensuring that the powder does not affect sensitive mechanical systems such as the ballscrews and ways. Here, the company was able to draw on extensive prior experience, Mr. Hudson says. Guarding and other kinematic protections the company has engineered for machining centers used in precision graphite milling have been adapted to protecting the machine against metal powder.
The reward for all of this development will be the opportunity to deliver much more manufacturing capability within a single cycle, and bring much more of a part’s production into a single machine. CNC machining is the solution for tight precision, while additive manufacturing is potentially the solution where a high level of geometric complexity is needed. Those two benefits need not be separate—a part that includes geometrically challenging features is now also a part that can be machined to tight tolerances, without any handling or travel needed to transition between those objectives.
Indeed, that promise is particularly beneficial to manufacturers in the aerospace industry, Mr. Hudson says. A large portion of the machine tool builder’s customers are in this sector. “Their aim is often the buy-to-fly ratio, or how much material they have to purchase versus how much is left once all of the part’s machining is done,” he says. Buy-to-fly ratios are often high to machine elaborate aircraft components out of solid billet or even out of forgings, meaning material waste is high. But hybrid manufacturing offers a solution here as well. That is, instead of an oversize workpiece going into the machine to get much of its material cut away, what if a workpiece that was actually incomplete went into the machine instead? For material efficiency, some of this part’s features would still be produced through machining, while other features—narrow fins and other projections, for example—could instead be produced cost-effectively by additively building them on.
Related Content
This Drone Bird with 3D Printed Parts Mimics a Peregrine Falcon: The Cool Parts Show #66
The Drone Bird Company has developed aircraft that mimic birds of prey to scare off problem birds. The drones feature 3D printed fuselages made by Parts on Demand from ALM materials.
Read MoreBeehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing
Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.
Read MoreAdditive Manufacturing Is Subtractive, Too: How CNC Machining Integrates With AM (Includes Video)
For Keselowski Advanced Manufacturing, succeeding with laser powder bed fusion as a production process means developing a machine shop that is responsive to, and moves at the pacing of, metal 3D printing.
Read More3D Printed Lattice for Mars Sample Return Crash Landing: The Cool Parts Show Bonus
NASA Jet Propulsion Laboratory employs laser powder bed fusion additive manufacturing plus chemical etching to create strong, lightweight lattice structures optimized to protect rock samples from Mars during their violent arrival on earth.
Read MoreRead Next
3MF File Format for Additive Manufacturing: More Than Geometry
The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.
Read MoreNew Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreHow Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read More