Additive Manufacturing of Brackets Saves 1 Kilogram per Satellite
Because of complexity, material and quantity, spacecraft and satellite components are good candidates for additive production.
Satellites and spacecraft components are excellent candidates for additive manufacturing. One reason is that weight is critical—every ounce saved is an ounce that does not have to be launched into space. Another reason is that these parts are typically made of materials that are hard to machine. Still another reason is that the parts are made in low quantities. Additive manufacturing is unfazed by any of these challenges—part complexity, the machinability of the metal and the smallness of the batch size all do not affect its cost or difficulty.
We recently wrote about how additive manufactured components are on their way to Jupiter in the Juno spacecraft. Another spacefaring success now comes from Airbus, which recently shifted the brackets that hold reflectors and other hardware on satellites to additive manufacturing. Redesigning the brackets for this additive production allowed Airbus to use less material, ultimately cutting nearly 1 kilogram per satellite.
Learn more about the application in this report from EOS.
(Brackets, by the way, are an underappreciated opportunity, says this additive manufacturing authority.)
Related Content
-
3D Printed Titanium Replaces Aluminum for Unmanned Aircraft Wing Splice: The Cool Parts Show #72
Rapid Plasma Deposition produces the near-net-shape preform for a newly designed wing splice for remotely piloted aircraft from General Atomics. The Cool Parts Show visits Norsk Titanium, where this part is made.
-
3D Printed Lattice for Mars Sample Return Crash Landing: The Cool Parts Show Bonus
NASA Jet Propulsion Laboratory employs laser powder bed fusion additive manufacturing plus chemical etching to create strong, lightweight lattice structures optimized to protect rock samples from Mars during their violent arrival on earth.
-
Additive Manufacturing in Space: Failing Upward
Not all 3D printed parts destined for space need to adhere to the standards of human space flight. Yet all parts made for space programs require some type of qualification and certification. NASA and The Barnes Global Advisors explore Q&C for these parts.