Additive Manufacturing: Front and Center at SPE’s ACCE
Ford discusses Carbon3D's layerless 3D printing technology.
Share
Read Next
It was all about automotive and design during the Society of Plastics Engineers (SPE) Automotive Composites Conference and Exhibition (ACCE) that took place last week in Novi, Michigan. The conference had three different tracks full of technical papers on a wide range of topics as well as several keynote speakers. They even had the very cool BMW i8, which features carbon-fiber-reinforced plastic, on full display. While there was plenty to digest at the show, one of the tracks that really stuck out to me was the one on additive manufacturing.
Perhaps showing its growth in the automotive market, this was the first year for SPE ACCE to feature a track specifically dedicated to additive manufacturing/3D printing.
Ellen Lee, materials and manufacturing research for Ford, Dearborn, Michigan), said that while additive manufacturing isn’t new for the automaker (almost 30 years of experience), the company is focused on going beyond the prototype level to the direct production of end use, functional parts. Recently, the company developed a dedicated new additive manufacturing research program to explore the potential of new technologies to manufacture vehicle-ready parts.
Also, Ford has partnered with Silicon Valley startup Carbon3D on using the company’s Continuous Liquid Interface Production (CLIP) technology. In December 2014, Ford began testing a pre-release version of Carbon3D’s first CLIP-based device. The company says that Carbon3D’s CLIP technology is allowing it to move more quickly from ideas to production. The automaker has already successfully applied the technology to current and future vehicle model designs, and is leveraging CLIP to research new automotive relevant materials.
Carbon3D’s CLIP technology uses a tunable photochemical process instead of the traditional mechanical approach, which is said to eliminate the “shortcomings of conventional layer-by-layer 3D printing technology,” to rapidly transform 3D models into physical objects. CLIP carefully balances the interaction of UV light, which triggers photo polymerization, and oxygen, which inhibits the reaction, allowing for continuously grown objects from a pool of resin. These predictable mechanical properties allow for part creation across the range of needs for Ford vehicles including under the hood, interiors and high strength to weight ratio parts.
Beyond the current vehicle applications, Ford has also been able to expand its own materials research because of CLIP’s gentle process and dedication to high quality polymeric materials. To date, the team has tested several materials including resins reinforced with nano-sized particles. Ford says its eager to further investigate resin modifications for improved mechanical properties and consider the creation of thermally and electrically conductive materials for future vehicle applications.
Looking toward the future, Lee said that one of the main challenges of additive manufacturing for automotive is limited materials as many materials currently available are not suitable for automotive applications. “The future direction for us is materials development and understanding how we can customize them,” she said.
“It’s nice to see automotive embrace additive manufacturing, since our requirements are more unique than medical and aerospace,” Lee said. “We believe additive manufacturing will significantly impact automotive manufacturing and Ford wants to be involved and also help direct where it goes.”
There are plenty more topics of interest from thermoplastics to recycling, and of course, more additive manufacturing, so be sure to check out my full conference overview in the November issue of Plastics Technology magazine.
Related Content
Daimler, OMIC Evaluate Wire-Fed DED for Moldmaking
3D printing a core and cavity on machine from Gefertec, followed by machining, allowed for a complete mold tool to be produced in three days.
Read MoreA Tour of The Stratasys Direct Manufacturing Facility
The company's Belton manufacturing site in Texas is growing to support its various 3D printing applications for mass production in industries such as automotive and aerospace.
Read MoreWhat Does Additive Manufacturing Readiness Look Like?
The promise of distributed manufacturing is alluring, but to get there AM first needs to master scale production. GKN Additive’s Michigan facility illustrates what the journey might look like.
Read MoreHow AM Enables Cobot Automation for Thyssenkrupp Bilstein (Includes Video)
The shock absorber maker has responded to its staffing shortages through extensive use of collaborative robots. In-house 3D printing makes this possible by providing the related hardware needed to complete the cobot-automated cells.
Read MoreRead Next
Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read MoreNew Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54
Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio.
Read MoreHow Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read More