3D Printing Machine Training
Published

Ceratizit 3D Prints Indexable Insert Milling System for Machining Heat-Resistant Materials

Despite the complexity of the coolant holes inside the tool body, the MaxiMill – 211-DC is compatible with standard adapters with through-coolant supply without requiring any standard coolant on the chipbreaker.

Share

The additive processes enable the shoulder mill to funnel the maximum amount of coolant directly on the insert flanks.  Source: Ceratizit

The additive processes enable the shoulder mill to funnel the maximum amount of coolant directly on the insert flanks. Source: Ceratizit

Ceratizit is utilizing laser powder bed fusion to produce its MaxiMill – 211-DC indexable insert milling system featuring an advanced coolant supply, which is optimized for machining heat-resistant materials such as titanium and other super alloys. The coolant supply is an important feature because heat-resistant materials, in particular, require the most effective possible cooling with emulsion to achieve a good machining result.

It is said conventional milling systems are limited and unpredictable for heat-resistant materials. In contrast, the MaxiMill – 211-DC was created through in-house AM with 3D printed cooling channels. Additive processes enable the patented shoulder mill to funnel the maximum amount of coolant directly on the insert flanks. In turn, it provides process reliability when machining heat-resistant super alloys.

According to the company, the MaxiMill – 211-DC has 60% longer tool life compared to tools with standard cooling. Also, despite the complexity of the coolant holes inside the tool body, the MaxiMill – 211-DC is compatible with standard adapters with through-coolant supply without requiring any standard coolant on the chipbreaker.

“We put additive manufacturing to work for our customers and to achieve results that are only possible when we push boundaries,” says Dan Cope, president of the Americas for Ceratizit Group. “Titanium and other super alloys are unconventional materials that require unconventional strategies.”

Produced with AM, the base body of the milling cutter on the MaxiMill – 211-DC opens up scope for the complexity required for flank cooling. This creates the perfect combination of geometric and functional properties — the ideal nozzle position, topped off with an insert geometry that is precisely tailored for cooling — guaranteeing full-coverage wetting of the coolant on the indexable insert cutting surface.

The numerous coolant holes inside the tool body are compatible with standard adapters with through coolant supply and provide a fast, simple means of ensuring direct cooling. Because of a focused flow of coolant to the flank of the cutting edge (without standard cooling on the chip breaker), the 3D-printed MaxiMill – 211-DC offers the same advantages as using direct cooling for turning tools.

Related Content

The World According To
UPM Additive Solutions
Acquire
Airtech
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event
AM Radio
3D printing machine trainings