3D Printing Machine Training
Published

GRM Develops Software for OverHiPP Project to Improve Accuracy of Digital Twins

As part of an OverHiPP study, GRM has created software that enables users to virtually model and analyze 3D printed structures at a level of detail never seen before — an accurate digital twin can now be generated, enabling precise design decisions to be made.

Share

Simulation model. Top photo shows optimized simulation result, while bottom photo shows CAD solution based on the simulation data. Source: GRM

Simulation model. Top photo shows optimized simulation result, while bottom photo shows CAD solution based on the simulation data. Source: GRM

GRM, a TriMech Group company, recently participated in a two-year OverHiPP (overprinting with high-performance polymers) project funded by Innovate UK which focused on developing and optimizing a new hybrid manufacturing technique for overprinting 3D printed material onto composite sheets.

Overprinting is a new approach that takes the benefits from a number of existing techniques, specifically from overmolding, resin transfer molding (RTM) and 3D printing. The benefits of this approach include low tooling costs, increased flexibility, rapid changeover of material and low material waste. One challenge with it, however, is the limited knowledge and technologies available.

Recent developments in five-axis 3D printing hardware have enabled projects to push the technological limits further by reducing the need for support structures, enabling manufacturing shapes not previously possible, even with conventional 3D printing, and, pertinently, overprinting material onto existing components. However, simulation techniques for such 3D printed structures have not developed at the same pace, the company says. This is a key area that GRM has been working on solutions.

GRM Consulting is a specialist design and topology optimization software company, with extensive knowledge and experience in developing finite element analysis (FEA) programs across a wide range of disciplines. The company has been developing new software for the OverHiPP project to provide insight, guidance and confidence in 3D printed components by improving the accuracy of digital twins.

The tool path and infill patterns make 5-axis 3D printed structures highly anisotropic in nature. This can make it difficult to accurately model these properties into a digital twin and gain insight into structural performance and failure modes. Moreover, it is almost impossible for a human to manually model the correct material orientation onto each element in an FEA model. GRM has solved this problem by developing software that can automatically replicate a toolpath in an FEA model. Based on a proprietary G-Code reader that can analyze and determine tool path properties before converting it into a digital twin format enables allows for the precise filament orientations and infill cavities to be considered when running structural simulations.

GRM has rigorously tested its results. One such test investigated the feasibility of 3D printing a hyper-car foot rest. This included a number of topology optimization studies being investigated to determine key load paths and structural performance. The final results were interpreted and modelled by GRM for manufacture.

The study aimed to determine the optimal build directions using the minimal amount of material to best support the assessed load cases. From this, a CAD model was then created in SolidWorks based on the topology results, ready for manufacture at the Centre for Additive Layer Manufacturing (CALM) at Exeter University using a high-temperature polyamide from Lehvoss. Local features, such as shoulder bolt mounts, were added and design for additive manufacturing (DFAM) drawings were generated.

It was clear from both the simulation and test results that a five-fold difference was found in both the stiffness and strength performance when printing in poor and optimal directions.

As part of the OverHiPP project, GRM has enabled users to virtually model and analyze 3D printed structures at a level of detail never seen before. An accurate digital twin can now be generated, enabling precise design decisions to be made, by creating updated Nastran/Abaqus models. All of these software features have strong correlation to physical tests, proving their validity. Different printing strategies can now be studied in detail, by assessing weak points and failure modes for each variant before manufacturing offering greater efficiencies in the workflow and more consistent, successful outcomes.

Acquire
Airtech
UPM Additive Solutions
The World According To
The Cool Parts Show
AM Radio

Related Content

Design

Airless Basketball Shows Promise of 3D Printed Lattices: The Cool Parts Show Bonus

Successfully matching the performance of a standard basketball demonstrates the control possible over the mechanical properties of digital materials.

Read More
Materials

3D Printed Lattices Replace Foam for Customized Helmet Padding: The Cool Parts Show #62

“Digital materials” resulting from engineered flexible polymer structures made through additive manufacturing are tunable to the application and can be tailored to the head of the wearer.

Read More
Materials

Understanding PEKK and PEEK for 3D Printing: The Cool Parts Show Bonus

Both materials offer properties desirable for medical implants, among other applications. In this bonus episode, hear more from Oxford Performance Materials and Curiteva about how these companies are applying PEKK and PEEK, respectively. 

Read More
Production

What Does Additive Manufacturing Readiness Look Like?

The promise of distributed manufacturing is alluring, but to get there AM first needs to master scale production. GKN Additive’s Michigan facility illustrates what the journey might look like.

Read More

Read Next

IMTS

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Metal

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
Product Development

How Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing

Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services. 

Read More
3D printing machine trainings