Consortium Builds Ship Propeller Via Wire plus Arc Additive Manufacturing (WAAM)
The robot-driven deposition technology has been successfully applied in a propeller application for the marine industry.
A cooperative consortium has successfully applied Wire plus Arc Additive Manufacturing (WAAM) to build a large propeller for a marine application. The additively manufactured part is based on a Promarin design typically found on a Damen Stan Tug type 1606. Fabricated from a bronze alloy, the propeller measures 1,300 mm in diameter and weighs approximately 180 kg.
The propeller was produced by a consortium consisting of the Damen Shipyards Group, RAMLAB, Promarin, Autodesk and Bureau Veritas, formed to develop first-class approved marine propellers made via additive manufacturing (AM). Damen’s involvement in the project began as a result of one of its in-house student research programs. Three students from Delft Technical University were investigating the potential of WAAM technology and they introduced Damen to the other members of the consortium.
“What is quite unique about this group of five companies is that, while we have joint interests, we also have individual aims,” says Kees Custers, project engineer in Damen’s Research & Development department. “This leads to a very productive and cooperative atmosphere in what is a very exciting project.”
Developed by researches at Cranfield University, WAAM is a deposition process that uses a GTAW (TIG) fusion welding power source. The WAAM program began in 2007 with funding from the University’s Innovative Manufacturing Research Centre and 15 industry partners, with the goal of creating a high-deposition rate additive manufacturing system incorporating a fully integrated robot. The WAAM system they developed currently offers a deposition rate of 10 kg/hr. for titanium, said to be higher than that offered by laser-based powder-bed methods.
The robot-driven WAAM system operates in an inert gas environment within a flexible enclosure developed by Huntingdon Fusion Technologies that can range to 27 m3. This customizable enclosure space coupled with high deposition rates make WAAM capable of producing larger parts several meters in size, such as marine and aircraft components.
Related Content
-
Possibilities From Electroplating 3D Printed Plastic Parts
Adding layers of nickel or copper to 3D printed polymer can impart desired properties such as electrical conductivity, EMI shielding, abrasion resistance and improved strength — approaching and even exceeding 3D printed metal, according to RePliForm.
-
How Norsk Titanium Is Scaling Up AM Production — and Employment — in New York State
New opportunities for part production via the company’s forging-like additive process are coming from the aerospace industry as well as a different sector, the semiconductor industry.
-
AM 101: What Is Binder Jetting? (Includes Video)
Binder jetting requires no support structures, is accurate and repeatable, and is said to eliminate dimensional distortion problems common in some high-heat 3D technologies. Here is a look at how binder jetting works and its benefits for additive manufacturing.