Aitrtech
Published

Customizable Bike Frame Developed with Additive Manufacturing

A bike frame featuring metal 3D-printed components demonstrates the potential for mass customization.

Share

It doesn’t matter how good a bike frame is if it doesn’t fit the rider. This is where Robot Bike Co. (RBC), based in the United Kingdom, sees the weakness in the current market offerings.

“If you are trying to produce the very best frame it makes no sense to then only offer it in a small number of sizes when the people you are selling it to come in all shapes and sizes,” says RBC’s Ed Haythornthwaite. Haythornthwaite is one of four founders of RBC, the others being Ben Farmer, Andy Hawkins and Ben Robarts-Arnold. Since 2013, the company has designed and produced custom mountain bike frames.

RBC recently unveiled its R160 mountain bike frame, designed and manufactured in the United Kingdom with the help of partner companies Altair, HiETA Technologies and Renishaw using metal additive manufacturing. Using a combination of selective laser melting, machining and carbon composite components, the project demonstrates how mass customization of bike frames could be possible.

AM development and project engineering specialist HiETA covers product design, manufacturing readiness and project management service from conceptual design to early-stage manufacturing. The company helped lead the project and shepherd it through to completion.

RBC designed the mountain bike frame concept, working with Dave Weagle, a well-known suspension designer, to develop and tailor the suspension design. The frame architecture places high strength-to-weight ratio titanium in high stress areas through 3D-printed joints, and connects them with carbon composite tubes which provide a high stiffness-to-weight ratio.

Simulation specialist Altair was responsible for optimizing the bike’s additively manufactured connecters. Using SolidThinking Inspire software, Altair was able to identify where material in the lugs could be removed to save weight and reduce part count without compromising performance.

“Additive manufacturing is the perfect partner for design optimization techniques as it allows us to produce components and systems that are far closer to the ideal balance of weight and performance,” says Paul Kirkham, team leader at Altair’s Bristol office.

Renishaw lent its expertise in additive manufacturing, machining and metrology to the project. Renishaw is the UK’s only manufacturer of metal additive manufacturing systems, and its RenAM 500M selective laser melting machine was used to manufacture the lugs of the bike frame from aerospace-grade Ti6Al4V. Following printing, the lugs were heat-treated and CNC machined.

RBC says that every lug can be made to order to suit bike riders. And because the production process is not constrained by a mold, the frame can be tailored to customers’ individual measurements or specifications and can be constantly improved as new technologies emerge.

“One of the great aspirations of additive manufacturing has always been mass customization,” says Mike Adams, CEO of HiETA. “Leading this project has allowed us to see integration of all the elements—a great new frame design, the use of state-of-the-art software tools for optimization and automation, the flexibility of the manufacturing process itself and effective collaboration between our partners is a great advert for the technologies and the South West of England showcasing that the aspiration is becoming a reality.”

The bike frame will retail for around 4,395 pounds (about $5,838 at the time of posting) with a lead time of four weeks. 

Acquire
The World According To
Airtech
UPM Additive Solutions
North America’s Premier Molding and Moldmaking Event
AM Radio
The Cool Parts Show

Related Content

Researchers Develop Method for Creating Customized 3D Printed Metals With Contrasting Properties

Researchers were able to use 3D printing techniques and tweak printing parameters to produce a 3D printed metal with different microstructures that create stronger and weaker regions in the exact locations in the metal that they wanted.

Read More
Polymer

3D Systems, Klarity Partner to Expand Access to Patient-Matched Radiotherapy Innovations

Klarity has added 3D Systems’ VSP Bolus to its radiotherapy solutions, enabling radiotherapy clinics in the U.S. and Canada to embrace 3D printing technology without investing in costly, time-consuming software.

Read More

NMPA Certifies Farsoon 3D Printed Tantalum Interspinal Fusion Cage

The company says the additively manufactured implants can be fully customized according to patients’ conditions, and the trabecular microstructure can achieve a high porosity of 68-78% to promote bone tissue and vessel fusion.

Read More

EOS Launches Digital Foam Architects Network

EOS created the collaborative additive manufacturing alliance to accelerate time-to-market for 3D printed foam applications.

Read More

Read Next

Supply Chain

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Design

3MF File Format for Additive Manufacturing: More Than Geometry

The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.

Read More
Metal

Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI

Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.

Read More
Airtech International Inc.