Aitrtech
Published

3D Systems Materials Expand Capabilities of SLA, Figure 4 Platforms

3D Systems’ latest high-performance materials can enable efficient production of end-use parts in industries such as automotive, aerospace, semiconductor and consumer goods.

Share

Parts produced with Accura AMX Tough FR V0 Black are flame-retardant and pass UL 94 V0 test standards. This high performance, fast-printing material is able to produce production-ready parts in high quantities or at large scale. Photo Credit: 3D Systems

Parts produced with Accura AMX Tough FR V0 Black are flame-retardant and pass UL 94 V0 test standards. This high performance, fast-printing material is able to produce production-ready parts in high quantities or at large scale. Photo Credit: 3D Systems

3D Systems has developed new materials to enhance its stereolithography (SLA) and Figure 4 portfolios – Accura AMX Tough FR V0 Black, Figure 4 Tough FR V0 Black, and Figure 4 JCAST-GRN 20. These high-performance materials can enable efficient production of end-use parts in industries such as automotive, aerospace, semiconductor and consumer goods.

Flame-Retardant SLA Material for Large-format Parts

3D Systems is continuing the evolution of its SLA materials with the introduction of Accura AMX Tough FR V0 Black. The company’s materials scientists developed a chemistry based on its Figure 4 materials that enabled the industry’s first flame-retardant material for SLA. As a result, the material is also available as Figure 4 Tough FR V0 Black for use with 3D Systems’ Figure 4 platform, enabling customers to scale part sizes and leverage the system advantages provided by each platform.

Accura AMX Tough FR V0 Black delivers enhanced part quality and resolution for SLA that was previously only achievable with selective laser sintering (SLS) and fused deposition modeling (FDM) technologies. This flame-retardant material achieves UL 94 V0 rating and offers a combination of flexural modulus and unmatched elongation at break of nearly 35%. These properties combine with long-term stability to make the new Tough FR V0 Black material well suited for applications such as printed circuit board covers, semiconductor equipment, electrical housing, covers, hangers, brackets and flame-retardant parts for trains and buses.

Jewelry Casting Material Improves Direct Casting Workflow

3D Systems’ Figure 4 Jewelry is an affordable solution optimized for jewelry design and manufacturing workflows. The company’s Figure 4 JCAST-GRN 20 is its latest jewelry casting material, which is optimized for clean and easy burnout of finely detailed, high-resolution, accurate, repeatable jewelry patterns for direct casting. This new offering complements 3D Systems’ multijet printing (MJP) offerings for jewelry casting. The material’s enhanced properties make it well suited for the production of master patterns for gypsum investment casting of all types of jewelry, and suitable for a range of precious metals. The fully integrated workflow includes jewelry-specific build styles in 3D Sprint which provides design flexibility. The integrated workflow can also eliminate the need for postcuring, enabling a fast turnaround of casting patterns.

“Materials are at the core of our additive manufacturing solutions,” says Marty Johnson, vice president, product and technical fellow, 3D Systems. “It’s imperative that we offer our customers the most advanced materials in a fully integrated system to address their unique application needs. Their challenges fuel our innovation. With the introduction of these novel SLA and Figure 4 materials, we are able to deliver additional capabilities to our customers that will facilitate operation and application flexibility and accelerate their innovation.”


The World According To
Airtech
Acquire
UPM Additive Solutions
AM Radio
North America’s Premier Molding and Moldmaking Event
The Cool Parts Show

Related Content

Sand

AM 101: What Is Binder Jetting? (Includes Video)

Binder jetting requires no support structures, is accurate and repeatable, and is said to eliminate dimensional distortion problems common in some high-heat 3D technologies. Here is a look at how binder jetting works and its benefits for additive manufacturing.

Read More
Materials

VulcanForms Is Forging a New Model for Large-Scale Production (and It's More Than 3D Printing)

The MIT spinout leverages proprietary high-power laser powder bed fusion alongside machining in the context of digitized, cost-effective and “maniacally focused” production.

Read More
Production

With Electrochemical Additive Manufacturing (ECAM), Cooling Technology Is Advancing by Degrees

San Diego-based Fabric8Labs is applying electroplating chemistries and DLP-style machines to 3D print cold plates for the semiconductor industry in pure copper. These complex geometries combined with the rise of liquid cooling systems promise significant improvements for thermal management.

Read More
Tooling

3D Printing Molds With Metal Paste: The Mantle Process Explained (Video)

Metal paste is the starting point for a process using 3D printing, CNC shaping and sintering to deliver precise H13 or P20 steel tooling for plastics injection molding. Peter Zelinski talks through the steps of the process in this video filmed with Mantle equipment.

Read More

Read Next

IMTS

New Equipment, Additive Manufacturing for Casting Replacement and AM's Next Phase at IMTS 2024: AM Radio #54

Additive manufacturing’s presence at IMTS – The International Manufacturing Technology Show revealed trends in technology as well as how 3D printing is being applied today and where it will be tomorrow. Peter Zelinski and I share observations from the show on this episode of AM Radio. 

Read More
Postprocessing

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
Basics

3MF File Format for Additive Manufacturing: More Than Geometry

The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.

Read More
Airtech International Inc.