Aitrtech
Published

3D Systems Materials Expand Capabilities of SLA, Figure 4 Platforms

3D Systems’ latest high-performance materials can enable efficient production of end-use parts in industries such as automotive, aerospace, semiconductor and consumer goods.

Share

Parts produced with Accura AMX Tough FR V0 Black are flame-retardant and pass UL 94 V0 test standards. This high performance, fast-printing material is able to produce production-ready parts in high quantities or at large scale. Photo Credit: 3D Systems

Parts produced with Accura AMX Tough FR V0 Black are flame-retardant and pass UL 94 V0 test standards. This high performance, fast-printing material is able to produce production-ready parts in high quantities or at large scale. Photo Credit: 3D Systems

3D Systems has developed new materials to enhance its stereolithography (SLA) and Figure 4 portfolios – Accura AMX Tough FR V0 Black, Figure 4 Tough FR V0 Black, and Figure 4 JCAST-GRN 20. These high-performance materials can enable efficient production of end-use parts in industries such as automotive, aerospace, semiconductor and consumer goods.

Flame-Retardant SLA Material for Large-format Parts

3D Systems is continuing the evolution of its SLA materials with the introduction of Accura AMX Tough FR V0 Black. The company’s materials scientists developed a chemistry based on its Figure 4 materials that enabled the industry’s first flame-retardant material for SLA. As a result, the material is also available as Figure 4 Tough FR V0 Black for use with 3D Systems’ Figure 4 platform, enabling customers to scale part sizes and leverage the system advantages provided by each platform.

Accura AMX Tough FR V0 Black delivers enhanced part quality and resolution for SLA that was previously only achievable with selective laser sintering (SLS) and fused deposition modeling (FDM) technologies. This flame-retardant material achieves UL 94 V0 rating and offers a combination of flexural modulus and unmatched elongation at break of nearly 35%. These properties combine with long-term stability to make the new Tough FR V0 Black material well suited for applications such as printed circuit board covers, semiconductor equipment, electrical housing, covers, hangers, brackets and flame-retardant parts for trains and buses.

Jewelry Casting Material Improves Direct Casting Workflow

3D Systems’ Figure 4 Jewelry is an affordable solution optimized for jewelry design and manufacturing workflows. The company’s Figure 4 JCAST-GRN 20 is its latest jewelry casting material, which is optimized for clean and easy burnout of finely detailed, high-resolution, accurate, repeatable jewelry patterns for direct casting. This new offering complements 3D Systems’ multijet printing (MJP) offerings for jewelry casting. The material’s enhanced properties make it well suited for the production of master patterns for gypsum investment casting of all types of jewelry, and suitable for a range of precious metals. The fully integrated workflow includes jewelry-specific build styles in 3D Sprint which provides design flexibility. The integrated workflow can also eliminate the need for postcuring, enabling a fast turnaround of casting patterns.

“Materials are at the core of our additive manufacturing solutions,” says Marty Johnson, vice president, product and technical fellow, 3D Systems. “It’s imperative that we offer our customers the most advanced materials in a fully integrated system to address their unique application needs. Their challenges fuel our innovation. With the introduction of these novel SLA and Figure 4 materials, we are able to deliver additional capabilities to our customers that will facilitate operation and application flexibility and accelerate their innovation.”


SolidCAM Additive - Upgrade Your Manufacturing
Airtech
Acquire
World According To
North America’s Premier Molding and Moldmaking Event
The Cool Parts Show
AM Radio

Related Content

Supply Chain

Video: 5" Diameter Navy Artillery Rounds Made Through Robot Directed Energy Deposition (DED) Instead of Forging

Big Metal Additive conceives additive manufacturing production factory making hundreds of Navy projectile housings per day.

Read More

With Electrochemical Additive Manufacturing (ECAM), Cooling Technology Is Advancing by Degrees

San Diego-based Fabric8Labs is applying electroplating chemistries and DLP-style machines to 3D print cold plates for the semiconductor industry in pure copper. These complex geometries combined with the rise of liquid cooling systems promise significant improvements for thermal management.

Read More
Metal

3D Printed NASA Thrust Chamber Assembly Combines Two Metal Processes: The Cool Parts Show #71

Laser powder bed fusion and directed energy deposition combine for an integrated multimetal rocket propulsion system that will save cost and time for NASA. The Cool Parts Show visits NASA’s Marshall Space Flight Center.

Read More
Sand

AM 101: What Is Binder Jetting? (Includes Video)

Binder jetting requires no support structures, is accurate and repeatable, and is said to eliminate dimensional distortion problems common in some high-heat 3D technologies. Here is a look at how binder jetting works and its benefits for additive manufacturing.

Read More

Read Next

Design

Bike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts

Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.

Read More
Metal

Profilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing

UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing. 

Read More
Construction

Alquist 3D Looks Toward a Carbon-Sequestering Future with 3D Printed Infrastructure

The Colorado startup aims to reduce the carbon footprint of new buildings, homes and city infrastructure with robotic 3D printing and a specialized geopolymer material.

Read More
Airtech International Inc.