GE Announces Additive Manufacturing Breakthrough in Commercial Aviation
Additive manufacturing is fulfilling its promise in the aerospace industry more than any other, as evidenced by more than 300 additively produced parts that help compose the new GE9X engine. GE Aviation has brought industrialized next-generation aerospace through additive manufacturing.
In an exclusive interview with Additive Manufacturing, General Electric (GE) Aviation revealed that its GE9X is to be the first commercial aircraft engine to reach production with significant additive content. Boeing’s new 777X twin-engine jet will be powered by the GE9X, a high-bypass turbofan engine that boasts 304 additively manufactured parts integrated into seven multi-part structures. The company says it was able to leverage and build upon earlier successes printing intricate assemblies and complex geometries, namely the 3D-printed fuel nozzle for the LEAP engine.
Of the seven components and 304 parts being additively manufactured for the GE9X, all except the LPT blades and the heat exchanger are cobalt chromium alloy parts printed via direct metal laser melting (DMLM) on Concept Laser M2 machines.
GE has identified the seven additively manufactured components in the engine:
- Fuel nozzle tip
- T25 sensor housing
- Heat exchanger
- Inducer
- Stage 5 low pressure turbine (LPT) blades
- Stage 6 LPT blades
- Combustor mixer
Materials engineering leader Lara Liou points out that the GE9X represents the first time GE Aviation has put multiple materials into additive production for an aviation application. “So now we're developing a true industrialized base and creating standards that already exist in other industries. Standards that help us to control production across multiple production sites; that help us to control across multiple raw materials suppliers; that help us to control across multiple materials and modalities — in other words, a foundation for a truly industrialized supply chain for additive manufacturing,” Liou says.
GE Aviation is currently printing these parts in its manufacturing plants in Auburn, Alabama, United States, and Cameri, Italy. The engine is expected to receive final Federal Aviation Administration (FAA) certification this year.
Liou continues, “I think the story is still to come on the GE9X. The real impact is going to be when our customers are flying, and they feel the impact of this additive manufacturing technology.”
Related Content
-
Additive Manufacturing Is Subtractive, Too: How CNC Machining Integrates With AM (Includes Video)
For Keselowski Advanced Manufacturing, succeeding with laser powder bed fusion as a production process means developing a machine shop that is responsive to, and moves at the pacing of, metal 3D printing.
-
Beehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing
Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.
-
At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?
The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.