EOS, Hyperganic Collaborate on Design, Performance of Space Propulsion Components
By creating a truly digital workflow, the companies aim to utilize additive manufacturing’s design freedom to create part structures and applications that were impossible to manufacture using traditional production processes.
Share
Read Next
Aerospike nozzle has a Hyperganic-enabled, software-generated algorithmic design, manufactured on an EOS M 400-4 system with the new, support-free NickelAlloy IN718 process and the new optimized flow nozzle. Photo Credit: EOS and Hyperganic
EOS is partnering with Hyperganic to advance the field of space propulsion by elevating the design and performance of space propulsion components. The collaboration includes the integration of Hyperganic Core — an AI-powered algorithmic engineering software platform — with EOS’ digital, additive manufacturing (AM) solutions.
“We are now partnering with Hyperganic to introduce another paradigm shift in AM. It is a design shift that expands solution spaces as well as performance levels,” says Dr. Hans J. Langer, EOS founder. “At the same time, it will revolutionize the design process for AM, making AM a truly digital workflow from software-generated algorithmic engineering to digital manufacturing.”
According to the companies, this collaboration is an industry first. “Algorithmic engineering translates ideas into designs in minutes, with the engineer setting the rules and the computer generating the results,” says Lin Kayser, Hyperganic CEO. “Specifically, the field of space propulsion, which still uses very conservative designs, will benefit greatly from algorithmic engineering.”
AM has been noted for revolutionizing design freedom. Traditional production processes utilizing CAD designs can still require laborious remodeling work for changes, the companies say. With every iteration costing time and money, CAD-based approaches may compel engineers to design conservatively instead of pushing the limits. Now, AM’s design freedom is said to enable part structures and applications that were impossible to manufacture using traditional production processes. The partnership between EOS and Hyperganic aims to take this approach to the next level.
One example is the aerospike rocket engine designed by Hyperganic and manufactured by EOS and AMCM, an EOS Group company. The aerospike engine was built from the ground up using an algorithmic model by Hyperganic. One of the hundreds of designs produced by Hyperganic in just days was printed on an EOS M 400-4. The complex part was printed with no supports using the newly developed EOS NickelAlloy IN718 process.
Consequently, the aerospike engine was automatically re-engineered for production on a substantially larger AMCM M 4K from AMCM in EOS CopperAlloy CuCrZr. The combination of this level of design complexity with the capability to print in this size in a reliable manner, will drive the next innovations in space propulsion, the companies say.
Related Content
-
Beehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing
Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.
-
At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?
The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.
-
With Electrochemical Additive Manufacturing (ECAM), Cooling Technology Is Advancing by Degrees
San Diego-based Fabric8Labs is applying electroplating chemistries and DLP-style machines to 3D print cold plates for the semiconductor industry in pure copper. These complex geometries combined with the rise of liquid cooling systems promise significant improvements for thermal management.